Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation

Abstract

Microglia are crucial for the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Here we show that the E3 ubiquitin ligase Peli1 is abundantly expressed in microglia and promotes microglial activation during the course of EAE induction. Peli1 mediates the induction of chemokines and proinflammatory cytokines in microglia and thereby promotes recruitment of T cells into the central nervous system. The severity of EAE is reduced in Peli1-deficient mice despite their competent induction of inflammatory T cells in the peripheral lymphoid organs. Notably, Peli1 regulates Toll-like receptor (TLR) pathway signaling by promoting degradation of TNF receptor–associated factor 3 (Traf3), a potent inhibitor of mitogen-activated protein kinase (MAPK) activation and gene induction. Ablation of Traf3 restores microglial activation and CNS inflammation after the induction of EAE in Peli1-deficient mice. These findings establish Peli1 as a microglia-specific mediator of autoimmune neuroinflammation and suggest a previously unknown signaling mechanism of Peli1 function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disease severity is reduced in Peli1 knockout mice after the induction of EAE.
Figure 2: Peli1 deficiency in radioresistant cells inhibits immune-cell recruitment into the CNS and reduces the severity of EAE.
Figure 3: Peli1-mediated microglial activation contributes to EAE pathogenesis.
Figure 4: Peli1 mediates TLR-stimulated gene expression and MAPK activation in microglia.
Figure 5: Peli1 regulates TLR-stimulated c-IAP2 ubiquitination and Traf3 degradation.
Figure 6: Traf3 ablation restores proinflammatory gene induction in Peli1-deficient microglia and increases EAE disease severity in Peli1-deficient mice.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Compston, A. & Coles, A. Multiple sclerosis. Lancet 372, 1502–1517 (2008).

    CAS  PubMed  Google Scholar 

  2. Miller, S.D., Karpus, W.J. & Davidson, T.S. Experimental autoimmune encephalomyelitis in the mouse. Curr. Protoc. Immunol. Chapter 15, Unit 15.11 (2010).

    Google Scholar 

  3. Goverman, J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol. 9, 393–407 (2009).

    Article  CAS  Google Scholar 

  4. Heppner, F.L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  Google Scholar 

  5. Ponomarev, E.D., Shriver, L.P., Maresz, K. & Dittel, B.N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81, 374–389 (2005).

    Article  CAS  Google Scholar 

  6. Friese, M.A. & Fugger, L. T cells and microglia as drivers of multiple sclerosis pathology. Brain 130, 2755–2757 (2007).

    Article  Google Scholar 

  7. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  Google Scholar 

  8. Saijo, K. & Glass, C.K. Microglial cell origin and phenotypes in health and disease. Nat. Rev. Immunol. 11, 775–787 (2011).

    Article  CAS  Google Scholar 

  9. Chastain, E.M., Duncan, D.S., Rodgers, J.M. & Miller, S.D. The role of antigen presenting cells in multiple sclerosis. Biochim. Biophys. Acta 1812, 265–274 (2011).

    Article  CAS  Google Scholar 

  10. Gao, Z. & Tsirka, S.E. Animal models of MS reveal multiple roles of microglia in disease pathogenesis. Neurol. Res. Int. 2011, 383087 (2011).

    Article  Google Scholar 

  11. Almolda, B., Gonzalez, B. & Castellano, B. Antigen presentation in EAE: role of microglia, macrophages and dendritic cells. Front. Biosci. 16, 1157–1171 (2011).

    Article  CAS  Google Scholar 

  12. Ascherio, A. & Munger, K.L. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann. Neurol. 61, 288–299 (2007).

    Article  Google Scholar 

  13. Stromnes, I.M. & Goverman, J.M. Active induction of experimental allergic encephalomyelitis. Nat. Protoc. 1, 1810–1819 (2006).

    Article  CAS  Google Scholar 

  14. Libbey, J.E. & Fujinami, R.S. Experimental autoimmune encephalomyelitis as a testing paradigm for adjuvants and vaccines. Vaccine 29, 3356–3362 (2011).

    Article  CAS  Google Scholar 

  15. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  CAS  Google Scholar 

  16. Gambuzza, M. et al. Targeting Toll-like receptors: emerging therapeutics for multiple sclerosis management. J. Neuroimmunol. 239, 1–12 (2011).

    Article  CAS  Google Scholar 

  17. Prinz, M. et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis. J. Clin. Invest. 116, 456–464 (2006).

    Article  CAS  Google Scholar 

  18. Olson, J.K. & Miller, S.D. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J. Immunol. 173, 3916–3924 (2004).

    Article  CAS  Google Scholar 

  19. Carpentier, P.A., Duncan, D.S. & Miller, S.D. Glial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain Behav. Immun. 22, 140–147 (2008).

    Article  CAS  Google Scholar 

  20. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  21. Tseng, P.H. et al. Different modes of ubiquitination of the adaptor TRAF3 selectively activate the expression of type I interferons and proinflammatory cytokines. Nat. Immunol. 11, 70–75 (2010).

    Article  CAS  Google Scholar 

  22. Häcker, H., Tseng, P.H. & Karin, M. Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat. Rev. Immunol. 11, 457–468 (2011).

    Article  Google Scholar 

  23. Schauvliege, R., Janssens, S. & Beyaert, R. Pellino proteins: novel players in TLR and IL-1R signalling. J. Cell Mol. Med. 11, 453–461 (2007).

    Article  CAS  Google Scholar 

  24. Moynagh, P.N. The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol. 30, 33–42 (2009).

    Article  CAS  Google Scholar 

  25. Jin, W., Chang, M. & Sun, S.C. Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell Mol. Immunol. 9, 113–122 (2012).

    Article  CAS  Google Scholar 

  26. Chang, M., Jin, W. & Sun, S.C. Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat. Immunol. 10, 1089–1095 (2009).

    Article  CAS  Google Scholar 

  27. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  Google Scholar 

  28. Chang, M. et al. The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat. Immunol. 12, 1002–1009 (2011).

    Article  CAS  Google Scholar 

  29. Goh, E.T. et al. Identification of the protein kinases that activate the E3 ubiquitin ligase Pellino 1 in the innate immune system. Biochem. J. 441, 339–346 (2012).

    Article  CAS  Google Scholar 

  30. Smith, H. et al. The role of TBK1 and IKKɛ in the expression and activation of Pellino 1. Biochem. J. 434, 537–548 (2011).

    Article  CAS  Google Scholar 

  31. Li, L. et al. A small molecule Smac mimic potentiates TRAIL- and TNFα-mediated cell death. Science 305, 1471–1474 (2004).

    Article  CAS  Google Scholar 

  32. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  Google Scholar 

  33. Vince, J.E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  Google Scholar 

  34. Saijo, K., Collier, J.G., Li, A.C., Katzenellenbogen, J.A. & Glass, C.K. An ADIOL-ERβ-CtBP transrepression pathway negatively regulates microglia-mediated inflammation. Cell 145, 584–595 (2011).

    Article  CAS  Google Scholar 

  35. Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med. 207, 2647–2662 (2010).

    Article  CAS  Google Scholar 

  36. Eisele, S. et al. Prospects of transcript profiling for mRNAs and microRNAs using formalin-fixed and paraffin-embedded dissected autoptic multiple sclerosis lesions. Brain Pathol. 22, 607–618 (2012).

    Article  CAS  Google Scholar 

  37. Gardam, S., Sierro, F., Basten, A., Mackay, F. & Brink, R. TRAF2 and TRAF3 signal adapters act cooperatively to control the maturation and survival signals delivered to B cells by the BAFF receptor. Immunity 28, 391–401 (2008).

    Article  CAS  Google Scholar 

  38. Liao, G., Zhang, M., Harhaj, E.W. & Sun, S.C. Regulation of the NF-κB–inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J. Biol. Chem. 279, 26243–26250 (2004).

    Article  CAS  Google Scholar 

  39. Reiley, W.W. et al. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat. Immunol. 7, 411–417 (2006).

    Article  CAS  Google Scholar 

  40. Jin, W., Zhou, X.F., Yu, J., Cheng, X. & Sun, S.C. Regulation of Th17 cell differentiation and EAE induction by the MAP3K NIK. Blood 113, 6603–6610 (2009).

    Article  CAS  Google Scholar 

  41. Ajami, B., Bennett, J.L., Krieger, C., McNagny, K.M. & Rossi, F.M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    Article  CAS  Google Scholar 

  42. Torkildsen, Ø. et al. Upregulation of immunoglobulin-related genes in cortical sections from multiple sclerosis patients. Brain Pathol. 20, 720–729 (2010).

    Article  CAS  Google Scholar 

  43. Dysvik, B. & Jonassen, I. J-Express: exploring gene expression data using Java. Bioinformatics 17, 369–370 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Centenary Institute of Cancer Medicine and Cell Biology for Traf3-floxed mice; the Texas A&M Institute for Genomic Medicine for Peli1 knockout mice; S.H. Park (Sungkyunkwan University) for hemagglutinin (HA)-tagged Peli1 and Peli1ΔC; R. Beyaert (Ghent University) for E-tag–Peli1; Z. Chen (University of Texas Southwestern Medical Center) for HA-tagged K63 ubiquitin; C. Du (University of Cincinnati College of Medicine) for Flag–c-IAP2; S. Akira (Osaka University) for Flag-IKKi; and X. Qin (Sun Yat-Sen University) for lentiviral packing plasmids. We also thank the personnel from the flow cytometry, DNA analysis, animal and histology core facilities at MD Anderson Cancer Center for technical assistance. This research was supported by grants from the US National Institutes of Health (AI057555, AI064639 and GM84459 to S.-C.S. and T32CA009598 to G.C.B.).

Author information

Authors and Affiliations

Authors

Contributions

Y.X. designed and did the research, prepared the figures and wrote the manuscript. J.J., M.C., J.-H.C., H.H., X.Z., G.C.B. and X.C. contributed experiments. C.S. and Ø.T. performed the human microarray experiments. X.W. and R.B. contributed reagents. S.-C.S. supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Shao-Cong Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1 and 2 (PDF 5156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Jin, J., Chang, M. et al. Peli1 promotes microglia-mediated CNS inflammation by regulating Traf3 degradation. Nat Med 19, 595–602 (2013). https://doi.org/10.1038/nm.3111

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3111

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing