Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of T cell signaling networks and development by Grb2 haploid insufficiency

Abstract

The developmental processes of positive and negative selection in the thymus shape the T cell antigen receptor (TCR) repertoire and require the integration of multiple signaling networks. These networks involve the efficient assembly of macromolecular complexes and are mediated by multimodular adaptor proteins that permit the functional integration of distinct signaling molecules. We show here that decreased expression of the adaptor protein Grb2 in Grb2 +/− mice weakens TCR-induced c-Jun N-terminal kinase (JNK) and p38, but not extracellular signal–regulated kinase (ERK), activation. In turn, this selective effect decreases the ability of thymocytes to undergo negative, but not positive, selection. We also show that there are differences in the signaling thresholds of the three mitogen-activated protein kinase (MAPK) families. These differences may provide a mechanism by which quantitative differences in signal strength can alter the balance of downstream signaling pathways to induce the qualitatively distinct biological outcomes of proliferation, differentiation or apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decreased Grb2 expression and normal ERK activation in Grb2+/− mice.
Figure 2: Attenuated JNK and p38 activation in Grb2+/− thymocytes.
Figure 3: Normal positive selection in Grb2+/− mice.
Figure 4: Haploid insufficiency effect of Grb2 on negative selection.
Figure 5: Decreased Ras activation and normal calcium increases in Grb2+/− mice.
Figure 6: Distinct thresholds for activation of MAPKs.
Figure 7: Inhibition of ERK but not of JNK activation in mice that express Ras(N17).
Figure 8: Relationship between signal strength, MAPK activation and biological outcome.

Similar content being viewed by others

References

  1. Clements, J., Boerth, N., Lee, J. & Koretzky, G. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu. Rev. Immunol. 17, 89–108 (1999).

    Article  CAS  Google Scholar 

  2. Zhang, W., Trible, R. P. & Samelson, L. E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation . Immunity 9, 239–246 (1998).

    Article  CAS  Google Scholar 

  3. Lin, J., Weiss, A. & Finco, T. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274 , 28861–28864 (1999).

    Article  CAS  Google Scholar 

  4. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: The ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 ( 1998).

    Article  CAS  Google Scholar 

  5. Liu, S., Fang, N., Koretzky, G. & McGlade, C. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr. Biol. 9, 67–75 (1999).

    Article  CAS  Google Scholar 

  6. Asada, H. et al. Grf40, a novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J. Exp. Med. 189, 1383–1390 (1999).

    Article  CAS  Google Scholar 

  7. Law, C.-L. et al. GrpL, a GRB2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J. Exp. Med. 189, 1243–1253 ( 1999).

    Article  CAS  Google Scholar 

  8. Sieh, M., Batzer, A., Schlessinger, J. & Weiss, A. Grb2 and phospholipase C-γ 1 associate with a 36- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell. Biol. 14, 4435–4442 (1994).

    Article  CAS  Google Scholar 

  9. Buday, L., Egan, S. E., Viciana, P. R., Cantrell, D. A. & Downward, J. A complex of Grb2 adaptor protein, Sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J. Biol. Chem. 269, 9019–9023 (1994).

    CAS  PubMed  Google Scholar 

  10. Trub, T., Frantz, J. D., Miyazaki, M., Band, H. & Shoelson, S. E. The role of a lymphoid-restricted, Grb2-like SH3-SH2-SH3 protein in T cell receptor signaling. J. Biol. Chem. 272, 894–902 (1997).

    Article  CAS  Google Scholar 

  11. Ebinu, J. et al. RasGRP, a Ras guanyl nucleotide-releasing protein with calcium- and diacylglycerol-binding motifs. Science 280, 1082–1086 (1998).

    Article  CAS  Google Scholar 

  12. Ebinu, J. et al. RasGRP links T-cell receptor signaling to Ras. Blood 95, 3199–3203 ( 2000).

    CAS  PubMed  Google Scholar 

  13. Dower, N. et al. RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nature Immunol. 1, 317– 321 (2000).

    Article  CAS  Google Scholar 

  14. Izquierdo, M., Leevers, S. J., Marshall, C. J. & Cantrell, D. p21ras couples the T cell antigen receptor to extracellular signal-regulated kinase 2 in T lymphocytes. J. Exp. Med. 178, 1199–1208 (1993).

    Article  CAS  Google Scholar 

  15. Rayter, S., Woodrow, M., Lucas, S. C., Cantrell, D. & Downward, J. p21ras mediates control of IL-2 gene promoter function in T cell activation. EMBO J. 11, 4549–4556 (1992).

    Article  CAS  Google Scholar 

  16. Nimnual, A. S., Yatsula, B. A. & Bar-Sagi, D. Coupling of Ras and Rac guanosine triphosphatases through the Ras exchanger Sos. Science 279, 560– 563 (1998).

    Article  CAS  Google Scholar 

  17. Minden, A., Lin, A., Claret, F. X., Abo, A. & Karin, M. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81, 1147–1157 (1995).

    Article  CAS  Google Scholar 

  18. Jacinto, E., Werlen, G. & Karin, M. Cooperation between Syk and Rac1 leads to synergistic JNK activation in T lymphocytes. Immunity 8, 31–41 (1998).

    Article  CAS  Google Scholar 

  19. Genot, E., Cleverley, S., Henning, S. & Cantrell, D. Multiple p21ras effector pathways regulate nuclear factor of activated T cells . EMBO J. 15, 3923–3933 (1996).

    Article  CAS  Google Scholar 

  20. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 ( 1999).

    Article  CAS  Google Scholar 

  21. Grossman, Z. & Singer, A. Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. Proc. Natl Acad. Sci. USA 93, 14747– 14752 (1997).

    Article  Google Scholar 

  22. Love, P. & Shores, E. ITAM multiplicity and thymocyte selection: how low can you go? Immunity 12, 591– 597 (2000).

    Article  CAS  Google Scholar 

  23. Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk1) knockout mice. Science 286, 1374– 1377 (1999).

    Article  CAS  Google Scholar 

  24. O'Shea, C. C., Crompton, T., Rosewell, I. R., Hayday, A. C. & Owen, M. J. Raf regulates positive selection . Eur. J. Immunol. 26, 2350– 2355 (1996).

    Article  CAS  Google Scholar 

  25. Swan, K. et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J. 14, 276– 285 (1995).

    Article  CAS  Google Scholar 

  26. Alberola-Ila, J., Forbush, K., Seger, R., Krebs, E. & Perlmutter, R. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620– 623 (1995).

    Article  CAS  Google Scholar 

  27. Alberola-Ila, J., Hogquist, K., Swan, K., Bevan, M. & Perlmutter, R. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9– 18 (1996).

    Article  CAS  Google Scholar 

  28. Rincon, M. et al. The JNK pathway regulates the in vivo deletion of immature CD4+CD8+ thymocytes. J. Exp. Med. 188, 1817–1830 ( 1998).

    Article  CAS  Google Scholar 

  29. Sabapathy, K. et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr. Biol. 11, 116–125 (1999).

    Article  Google Scholar 

  30. Sugawara, T., Moriguchi, T., Nishida, E. & Takahama, Y. Differential roles of Erk and p38 MAPK kinase pathways in positive and negative selection of T lymphocytes. Immunity 9, 565–574 (1998).

    Article  CAS  Google Scholar 

  31. Dong, C. et al. Defective T cell differentiation in the absence of Jnk1. Science 282, 2092–2095 ( 1998).

    Article  CAS  Google Scholar 

  32. Dong, C. et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 405, 91– 94 (2000).

    Article  CAS  Google Scholar 

  33. Cheng, A. et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 95, 793 –803 (1998).

    Article  CAS  Google Scholar 

  34. Dumont, F., Staruch, M., Fischer, P., DaSilva, C. & Camacho, R. Inhibition of T cell activation by pharmacologic disruption of the MEK1/ERK MAP kinase or calcineurin signaling pathways results in differential modulation of cytokine production. J. Immunol. 160, 2579–2589 (1998).

    CAS  PubMed  Google Scholar 

  35. Su, B. et al. JNK is involved in signal integration during costimulation of T lymphocytes. Cell 77, 727– 736 (1994).

    Article  Google Scholar 

  36. Weiss, L. et al. Regulation of c-Jun NH2-terminal kinase (Jnk) gene expression during T cell activation. J. Exp. Med. 191, 139–145 (2000).

    Article  CAS  Google Scholar 

  37. Kisielow, P., Teh, H. S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730– 733 (1988).

    Article  CAS  Google Scholar 

  38. Murphy, K., Heimberger, A. B. & Loh, D. Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720– 1723 (1990).

    Article  CAS  Google Scholar 

  39. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742– 746 (1988).

    Article  CAS  Google Scholar 

  40. Shi, Y. et al. In vivo administration of monoclonal antibodies to the CD3 T cell receptor complex induces cell death (apoptosis) in immature thymocytes . J. Immunol. 146, 3340– 3346 (1991).

    CAS  PubMed  Google Scholar 

  41. Kishimoto, H., Surh, C. & Sprent, J. A role for Fas in negative selection of thymocytes in vivo. J. Exp. Med. 187, 1427– 1438 (1998).

    Article  CAS  Google Scholar 

  42. Kishimoto, H. & Sprent, J. Negative selection in the thymus includes semimature T cells. J. Exp. Med. 185, 263–271 (1997).

    Article  CAS  Google Scholar 

  43. Egan, S. E. et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363, 45–51 ( 1993).

    Article  CAS  Google Scholar 

  44. Taylor, S. & Shalloway, D. Cell cycle-dependent activation of Ras. Curr. Biol. 6, 1621– 1627 (1996).

    Article  CAS  Google Scholar 

  45. Genot, E. & Cantrell, D. Ras regulation and function in lymphocytes. Curr. Opin. Immunol. 12, 289 –294 (2000).

    Article  CAS  Google Scholar 

  46. Denny, M., Kaufman, H., Chan, A. & Straus, D. The Lck SH3 domain is required for activation of the MAP kinase pathway, but not the initiation of T cell antigen receptor signaling. J. Biol. Chem. 274, 5146–5152 (1999).

    Article  CAS  Google Scholar 

  47. Faris, M., Kokot, N., Lee, L. & Nel, A. Regulation of interleukin-2 transcription by inducible stable expression of dominant negative and dominant active mitogen-activated protein kinase kinase kinase in Jurkat T cells. Evidence for the importance of Ras in a pathway that is controlled by dual receptor stimulation. J. Biol. Chem. 271, 27366– 27373 (1996).

    Article  CAS  Google Scholar 

  48. Simon, M. A., Dodson, G. S. & Rubin, G. M. An SH3-SH2-SH3 protein is required for p21Ras1 activation and binds to sevenless and Sos proteins in vitro. Cell 73, 169–177 (1993).

    Article  CAS  Google Scholar 

  49. Love, P., Lee, J. & Shores, E. Critical relationship between TCR signaling potential and TCR affinity during thymocyte selection. J. Immunol. 165, 3080 –3087 (2000).

    Article  CAS  Google Scholar 

  50. Schaeffer, E. & Schwartzberg, P. Tec family kinases in lymphocyte signaling and function. Curr. Opin. Immunol. 12, 282–288 (2000).

    Article  CAS  Google Scholar 

  51. Holsinger, L., Spencer, D., Austin, D., Schreiber, S. & Crabtree, G. Signal transduction in T lymphocytes using a conditional allele of Sos. Proc. Natl Acad. Sci. USA 92, 9810–9814 (1995).

    Article  CAS  Google Scholar 

  52. Zhang, W. et al. Association of Grb2, Gads and phospholipase Cγ1 with phosphorylated LAT tyrosine residues: effect of tyrosine mutations on T cell antigen receptor-mediated signaling. J. Biol. Chem. 275, 23355– 23361 (2000).

    Article  CAS  Google Scholar 

  53. Pomerance, M. et al. Grb2 interaction with MEK-kinase 1 is involved in regulation of Jun-kinase activities in response to epidermal growth factor. J. Biol. Chem. 273, 24301–24304 (1998).

    Article  CAS  Google Scholar 

  54. Liou, J. et al. HPK1 is activated by lymphocyte antigen receptors and negatively regulates AP-1. Immunity 12, 399– 408 (2000).

    Article  CAS  Google Scholar 

  55. Donovan, J., Wange, R., Langdon, W. & Samelson, L. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J. Biol. Chem. 269, 22921–22924 (1994).

    CAS  PubMed  Google Scholar 

  56. Ando, A. et al. A complex of GRB2-dynamin binds to tyrosine-phosphorylated insulin receptor substrate-1 after insulin treatment. EMBO J. 13, 3033–3038 (1994).

    Article  CAS  Google Scholar 

  57. Kharbanda, S. et al. Stimulation of human monocytes with macrophage colony stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl Acad. Sci. USA 92, 6132–6136 (1995).

    Article  CAS  Google Scholar 

  58. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. & Greenberg, M. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326 –1331 (1995).

    Article  CAS  Google Scholar 

  59. Feig, L. & Cooper, G. Relationship among guanine nucleotide exchange, GTP hydrolysis, and transforming potential of mutated ras proteins . Mol. Cell. Biol. 8, 3235– 3243 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Blumer, H. Piwnica-Worms, T. Chatila, A. Shaw and P. Allen for critical reading of the manuscript and A. Weiss and R. Germain for critical discussion of the data. Supported, in part, by the National Institutes of Health (grant number AI47330), the Medical Research Council of Canada (to T. P.) and a Terry Fox Program Project Grant from the National Cancer Institute of Canada (to T. P.). T. P. is a Distinguished Scientist of the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew C. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Q., Cheng, A., Akk, A. et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat Immunol 2, 29–36 (2001). https://doi.org/10.1038/83134

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing