Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE LYMPHOBLASTIC LEUKEMIA

Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T-ALL

Abstract

T lymphocyte acute lymphoblastic leukemia (T-ALL) is frequently associated with increased expression of the E protein transcription factor inhibitors TAL1 and LYL1. In mouse models, ectopic expression of TAL1 or LYL1 in T cell progenitors, or inactivation of E2A, is sufficient to predispose mice to develop T-ALL. How E2A suppresses thymocyte transformation is currently unknown. Here, we show that early deletion of E2a, prior to the DN3 stage, was required for robust leukemogenesis and was associated with alterations in thymus cellularity, T cell differentiation, and gene expression in immature CD4+CD8+ thymocytes. Introduction of wild-type thymocytes into mice with early deletion of E2a prevented leukemogenesis, or delayed disease onset, and impacted the expression of multiple genes associated with transformation and genome instability. Our data indicate that E2A suppresses leukemogenesis by promoting T cell development and enforcing inter-thymocyte competition, a mechanism that is emerging as a safeguard against thymocyte transformation. These studies have implications for understanding how multiple essential regulators of T cell development suppress T-ALL and support the hypothesis that thymocyte competition suppresses leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Early hematopoietic deletion of E2a predisposes mice to T-ALL and alters thymocyte development.
Fig. 2: HSC-, but not DN3-deletion of E2a alters oncogenic gene expression in DP thymocytes from 4-week-old mice.
Fig. 3: VcKO DP thymocytes show increased gene dysregulation in 8-week-old DPs compared to 4-week-old DPs.
Fig. 4: Wild-type thymocytes compete with VcKO thymocytes to limit leukemogenesis and alter DP gene expression.
Fig. 5: Leukemia latency in TPT chimeric mice is associated with WT competitor chimerism.

Similar content being viewed by others

Data availability

The RNA-seq data presented in this paper are available through the Gene Expression Omnibus database under accession number GSE234609 and are available at the following URL: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE234609. Other data in the paper will be made available upon reasonable request.

References

  1. Aifantis I, Raetz E, Buonamici S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol. 2008;8:380–90.

    CAS  PubMed  Google Scholar 

  2. Noronha EP, Marques LVC, Andrade FG, Thuler LCS, Terra-Granado E, Pombo-de-Oliveira MS, et al. The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia. Front Oncol. 2019;9:316.

    PubMed  PubMed Central  Google Scholar 

  3. Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer. 2016;16:494–507.

    CAS  PubMed  Google Scholar 

  4. Ferrando AA, Look AT. Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol. 2003;40:274–80.

    CAS  PubMed  Google Scholar 

  5. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. O’Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH, et al. Activating Notch1 mutations in mouse models of T-ALL. Blood. 2006;107:781–5.

    PubMed  PubMed Central  Google Scholar 

  7. Van Vlierberghe P, Ferrando A. The molecular basis of T cell acute lymphoblastic leukemia. J Clin Investig. 2012;122:3398–406.

    PubMed  PubMed Central  Google Scholar 

  8. Parriott G, Kee BL. E Protein Transcription Factors as Suppressors of T Lymphocyte Acute Lymphoblastic Leukemia. Front Immunol. 2022;13:885144.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bain G, Engel I, Robanus Maandag EC, te Riele HPJ, Voland JR, Sharp LL, et al. E2A Deficiency Leads to Abnormalities in αβ T-Cell Development and to Rapid Development of T-Cell Lymphomas. Mol Cell Biol. 1997;17:4782–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y. High Incidence of T-Cell Tumors in E2A-Null Mice and E2A/Id1 Double-Knockout Mice. Mol Cell Biol. 1997;17:7317–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wilson NK, Foster SD, Wang X, Knezevic K, Schütte J, Kaimakis P, et al. Combinatorial Transcriptional Control In Blood Stem/Progenitor Cells: Genome-wide Analysis of Ten Major Transcriptional Regulators. Cell Stem Cell. 2010;7:532–44.

    CAS  PubMed  Google Scholar 

  12. de Pooter RF, Dias S, Chowdhury M, Bartom ET, Okoreeh MK, Sigvardsson M, et al. Cutting Edge: Lymphomyeloid-Primed Progenitor Cell Fates Are Controlled by the Transcription Factor Tal1. J Immunol. 2019;202:2837–42.

    PubMed  Google Scholar 

  13. Zohren F, Souroullas GP, Luo M, Gerdemann U, Imperato MR, Wilson NK, et al. The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nat Immunol. 2012;13:761–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bouderlique T, Peña-Pérez L, Kharazi S, Hils M, Li X, Krstic A, et al. The Concerted Action of E2-2 and HEB Is Critical for Early Lymphoid Specification. Front Immunol. 2019;10:455.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yui MA, Rothenberg EV. Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol. 2014;14:529–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Anderson MK. At the crossroads: diverse roles of early thymocyte transcriptional regulators. Immunol Rev. 2006;209:191–211.

    CAS  PubMed  Google Scholar 

  17. Tan TK, Zhang C, Sanda T. Oncogenic transcriptional program driven by TAL1 in T-cell acute lymphoblastic leukemia. Int J Hematol. 2019;109:5–17.

    CAS  PubMed  Google Scholar 

  18. O’Neil J, Shank J, Cusson N, Murre C, Kelliher M. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell. 2004;5:587–96.

    PubMed  Google Scholar 

  19. Kim D, Peng XC, Sun XH. Massive Apoptosis of Thymocytes in T-Cell-Deficient Id1 Transgenic Mice. Mol Cell Biol. 1999;19:8240–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Morrow MA, Mayer EW, Perez CA, Adlam M, Siu G. Overexpression of the Helix–Loop–Helix protein Id2 blocks T cell development at multiple stages. Mol Immunol. 1999;36:491–503.

    CAS  PubMed  Google Scholar 

  21. Paiva RA, Ramos CV, Martins VC. Thymus autonomy as a prelude to leukemia. FEBS J. 2018;285:4565–74.

    CAS  PubMed  Google Scholar 

  22. Peaudecerf L, Lemos S, Galgano A, Krenn G, Vasseur F, Di Santo JP, et al. Thymocytes may persist and differentiate without any input from bone marrow progenitors. J Exp Med. 2012;209:1401–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Martins VC, Ruggiero E, Schlenner SM, Madan V, Schmidt M, Fink PJ, et al. Thymus-autonomous T cell development in the absence of progenitor import. J Exp Med. 2012;209:1409–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Martins VC, Busch K, Juraeva D, Blum C, Ludwig C, Rasche V, et al. Cell competition is a tumour suppressor mechanism in the thymus. Nature. 2014;509:465–70.

    ADS  CAS  PubMed  Google Scholar 

  25. Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DHD, et al. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med. 2023;220:e20212383.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. McCormack MP, Shields BJ, Jackson JT, Nasa C, Shi W, Slater NJ, et al. Requirement for Lyl1 in a model of Lmo2-driven early T-cell precursor ALL. Blood. 2013;122:2093–103.

    CAS  PubMed  Google Scholar 

  27. Pan L, Hanrahan J, Li J, Hale LP, Zhuang Y. An Analysis of T Cell Intrinsic Roles of E2A by Conditional Gene Disruption in the Thymus. J Immunol. 2002;168:3923–32.

    CAS  PubMed  Google Scholar 

  28. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  30. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.

    CAS  PubMed  Google Scholar 

  31. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  32. Manning J, WackerO, Peltzer A, Nf-Core Bot, Ribeiro-Dantas M, Harshil Patel, et al. nf-core/differentialabundance: v1.2.0 - 2023-04-19. Zenodo; 2023 [cited 2023 Apr 22]. https://zenodo.org/record/7568000.

  33. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    ADS  PubMed  PubMed Central  Google Scholar 

  34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102:15545–50.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carr T, McGregor S, Dias S, Verykokakis M, Le Beau MM, Xue HH, et al. Oncogenic and Tumor Suppressor Functions for Lymphoid Enhancer Factor 1 in E2a-/- T Acute Lymphoblastic Leukemia. Front Immunol. 2022;13:845488.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Adler SH, Chiffoleau E, Xu L, Dalton NM, Burg JM, Wells AD, et al. Notch Signaling Augments T Cell Responsiveness by Enhancing CD25 Expression. J Immunol. 2003;171:2896–903.

    CAS  PubMed  Google Scholar 

  37. Dias S, Månsson R, Gurbuxani S, Sigvardsson M, Kee BL. E2A Proteins Promote Development of Lymphoid-Primed Multipotent Progenitors. Immunity. 2008;29:217–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Krishnamoorthy V, Carr T, de Pooter RF, Akinola EO, Gounari F, Kee BL. Repression of Ccr9 Transcription in Mouse T Lymphocyte Progenitors by the Notch Signaling Pathway. J Immunol. 2015;194:3191–200.

    CAS  PubMed  Google Scholar 

  39. Yang Q, Esplin B, Borghesi L. E47 regulates hematopoietic stem cell proliferation and energetics but not myeloid lineage restriction. Blood. 2011;117:3529–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kee BL, Bain G, Murre C. IL-7Ralpha and E47: independent pathways required for development of multipotent lymphoid progenitors. EMBO J. 2002;21:103–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ikawa T, Kawamoto H, Goldrath AW, Murre C. E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med. 2006;203:1329–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu W, Carr T, Ramirez K, McGregor S, Sigvardsson M, Kee BL. E2A transcription factors limit expression of Gata3 to facilitate T lymphocyte lineage commitment. Blood. 2013;121:1534–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Qian L, Bajana S, Georgescu C, Peng V, Wang HC, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216:884–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 2006;20:2096–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Reschly EJ, Spaulding C, Vilimas T, Graham WV, Brumbaugh RL, Aifantis I, et al. Notch1 promotes survival of E2A-deficient T cell lymphomas through pre–T cell receptor–dependent and –independent mechanisms. Blood. 2006;107:4115–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Crusio KM, King B, Reavie LB, Aifantis I. The ubiquitous nature of cancer: the role of the SCFFbw7 complex in development and transformation. Oncogene. 2010;29:4865–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Laptenko O, Prives C. p53: master of life, death, and the epigenome. Genes Dev. 2017;31:955–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hurlin PJ, Quéva C, Koskinen PJ, Steingrímsson E, Ayer DE, Copeland NG, et al. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J. 1996;15:2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu CL, Chen BY, Li Z, Yang T, Xu CH, Yang R, et al. Targeting UHRF1-SAP30-MXD4 axis for leukemia initiating cell eradication in myeloid leukemia. Cell Res. 2022;32:1105–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, et al. Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia. Science. 2004;306:269–71.

    ADS  CAS  PubMed  Google Scholar 

  51. Elias HK, Bryder D, Park CY. Molecular mechanisms underlying lineage bias in aging hematopoiesis. Semin Hematol. 2017;54:4–11.

    PubMed  Google Scholar 

  52. Bensberg M, Rundquist O, Selimović A, Lagerwall C, Benson M, Gustafsson M, et al. TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 2021;118:e2110758118.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44:1179–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chiang MY, Xu L, Shestova O, Histen G, L’Heureux S, Romany C, et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras–initiated leukemia. J Clin Invest. 2008;118:3181–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kashiwagi M, Figueroa DS, Ay F, Morgan BA, Georgopoulos K. A double-negative thymocyte-specific enhancer augments Notch1 signaling to direct early T cell progenitor expansion, lineage restriction and β-selection. Nat Immunol. 2022;23:1628–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 2007;204:1813–24.

    PubMed  PubMed Central  Google Scholar 

  57. Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 2007;204:1825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA. 2006;103:18261–6.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chiang MY, Wang Q, Gormley AC, Stein SJ, Xu L, Shestova O, et al. High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. Blood. 2016;128:2229–40.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Kee laboratory, S. Dias, and A. Melnick for helpful discussions and S. Liang for technical assistance. We thank the University of Chicago Genomics Facility (RRID: SCR_019196) and Cytometry and Antibody Technology Facility (RRID: SCR_017760).

Funding

This work was funded by the National Institutes of Health grants R21 AI119894, R01 AI107213, the Janet Rowley Fund from the University of Chicago Comprehensive Cancer Center, and a Team Science award from the Biological Science Division of the University of Chicago to BLK. GP was supported by T32 AI007090. The University of Chicago Genomics Facility and Cytometry and Antibody Technology Facility receive financial support from the Cancer Center Support Grant (P30 CA014599), and the Animal Resource Center.

Author information

Authors and Affiliations

Authors

Contributions

GP designed, performed, and interpreted experiments and analyzed RNA-seq data, EH, REM and CF maintained mice, performed and analyzed experiments, and had essential intellectual input, CS and WS provided valuable advice and edited the manuscript, ETB performed RNA-seq analysis and edited the manuscript, BLK conceived of the project, designed and interpreted experiments, and provided funding for the project. GP and BLK wrote the manuscript.

Corresponding author

Correspondence to Barbara L. Kee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parriott, G., Hegermiller, E., Morman, R.E. et al. Loss of thymocyte competition underlies the tumor suppressive functions of the E2a transcription factor in T-ALL. Leukemia 38, 491–501 (2024). https://doi.org/10.1038/s41375-023-02123-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02123-4

Search

Quick links