Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pellino3 targets the IRF7 pathway and facilitates autoregulation of TLR3- and viral-induced expression of type I interferons

Abstract

Toll-like receptors (TLRs) sense pathogen-associated molecules and respond by inducing cytokines and type I interferon. Here we show that genetic ablation of the E3 ubiquitin ligase Pellino3 augmented the expression of type I interferon but not of proinflammatory cytokines in response to TLR3 activation. Pellino3-deficient mice had greater resistance against the pathogenic and lethal effects of encephalomyocarditis virus (EMCV). TLR3 signaling induced Pellino3, which in turn interacted with and ubiquitinated TRAF6. This modification suppressed the ability of TRAF6 to interact with and activate IRF7, resulting in downregulation of type I interferon expression. Our findings highlight a new physiological role for Pellino3 and define a new autoregulatory network for controlling type I interferon expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pellino3 deficiency results in enhanced TLR3-induced expression of IFN-β and related genes.
Figure 2: Pellino3-deficient cells exhibit an enhanced type 1 interferon response to EMCV infection.
Figure 3: Peli3−/− mice exhibit augmented IFN-β expression and increased viral clearance in response to EMCV infection.
Figure 4: Pellino3 inhibits activation and nuclear translocation of IRF7.
Figure 5: Loss of Pellino3 enhances binding of TRAF6 to IRF7 and ubiquitination of IRF7.
Figure 6: Pellino3 mediates TLR3-induced ubiquitination of TRAF6, which negatively regulates ubiquitination of IRF7 and expression of IFN-β.

Similar content being viewed by others

References

  1. Moynagh, P.N. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway. Trends Immunol. 26, 469–476 (2005).

    CAS  PubMed  Google Scholar 

  2. Medzhitov, R. et al. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2, 253–258 (1998).

    CAS  PubMed  Google Scholar 

  3. Li, S., Strelow, A., Fontana, E.J. & Wesche, H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. USA 99, 5567–5572 (2002).

    CAS  PubMed  Google Scholar 

  4. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D.V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    CAS  PubMed  Google Scholar 

  5. Suzuki, N. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750–756 (2002).

    CAS  PubMed  Google Scholar 

  6. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  7. Moynagh, P.N. The NF-κB pathway. J. Cell Sci. 118, 4589–4592 (2005).

    CAS  PubMed  Google Scholar 

  8. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    CAS  PubMed  Google Scholar 

  9. Cusson-Hermance, N., Khurana, S., Lee, T.H., Fitzgerald, K.A. & Kelliher, M.A. Rip1 mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 280, 36560–36566 (2005).

    CAS  PubMed  Google Scholar 

  10. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nat. Immunol. 5, 503–507 (2004).

    CAS  PubMed  Google Scholar 

  11. Sasai, M. et al. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Mol. Immunol. 47, 1283–1291 (2010).

    CAS  PubMed  Google Scholar 

  12. Sato, S. et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171, 4304–4310 (2003).

    CAS  PubMed  Google Scholar 

  13. Jiang, Z., Mak, T.W., Sen, G. & Li, X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc. Natl. Acad. Sci. USA 101, 3533–3538 (2004).

    CAS  PubMed  Google Scholar 

  14. Gohda, J., Matsumura, T. & Inoue, J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173, 2913–2917 (2004).

    CAS  PubMed  Google Scholar 

  15. Hacker, H. et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439, 204–207 (2006).

    PubMed  Google Scholar 

  16. Fitzgerald, K.A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  PubMed  Google Scholar 

  17. Stetson, D.B. & Medzhitov, R. Type I interferons in host defense. Immunity 25, 373–381 (2006).

    CAS  PubMed  Google Scholar 

  18. Theofilopoulos, A.N., Baccala, R., Beutler, B. & Kono, D.H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    CAS  PubMed  Google Scholar 

  19. Moynagh, P.N. The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol. 30, 33–42 (2009).

    CAS  PubMed  Google Scholar 

  20. Schauvliege, R., Janssens, S. & Beyaert, R. Pellino proteins: novel players in TLR and IL-1R signalling. J. Cell. Mol. Med. 11, 453–461 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin, C.C., Huoh, Y.S., Schmitz, K.R., Jensen, L.E. & Ferguson, K.M. Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1. Structure 16, 1806–1816 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Schauvliege, R., Janssens, S. & Beyaert, R. Pellino proteins are more than scaffold proteins in TLR/IL-1R signalling: a role as novel RING E3-ubiquitin-ligases. FEBS Lett. 580, 4697–4702 (2006).

    CAS  PubMed  Google Scholar 

  23. Butler, M.P., Hanly, J.A. & Moynagh, P.N. Kinase-active interleukin-1 receptor-associated kinases promote polyubiquitination and degradation of the Pellino family: direct evidence for PELLINO proteins being ubiquitin-protein isopeptide ligases. J. Biol. Chem. 282, 29729–29737 (2007).

    CAS  PubMed  Google Scholar 

  24. Ordureau, A. et al. The IRAK-catalysed activation of the E3 ligase function of Pellino isoforms induces the Lys63-linked polyubiquitination of IRAK1. Biochem. J. 409, 43–52 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Smith, H. et al. Identification of the phosphorylation sites on the E3 ubiquitin ligase Pellino that are critical for activation by IRAK1 and IRAK4. Proc. Natl. Acad. Sci. USA 106, 4584–4590 (2009).

    CAS  PubMed  Google Scholar 

  26. Smith, H. et al. The role of TBK1 and IKKepsilon in the expression and activation of Pellino 1. Biochem. J. 434, 537–548 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Goh, E.T. et al. Identification of the protein kinases that activate the E3 ubiquitin ligase Pellino 1 in the innate immune system. Biochem. J. 441, 339–346 (2012).

    CAS  PubMed  Google Scholar 

  28. Strelow, A., Kollewe, C. & Wesche, H. Characterization of Pellino2, a substrate of IRAK1 and IRAK4. FEBS Lett. 547, 157–161 (2003).

    CAS  PubMed  Google Scholar 

  29. Kim, J.H. et al. Pellino-1, an adaptor protein of interleukin-1 receptor/toll-like receptor signaling, is sumoylated by Ubc9. Mol. Cells 31, 85–89 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang, Z. et al. Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J. Biol. Chem. 278, 10952–10956 (2003).

    CAS  PubMed  Google Scholar 

  31. Yu, K.Y. et al. Cutting edge: mouse pellino-2 modulates IL-1 and lipopolysaccharide signaling. J. Immunol. 169, 4075–4078 (2002).

    CAS  PubMed  Google Scholar 

  32. Jensen, L.E. & Whitehead, A.S. Pellino2 activates the mitogen activated protein kinase pathway. FEBS Lett. 545, 199–202 (2003).

    CAS  PubMed  Google Scholar 

  33. Jensen, L.E. & Whitehead, A.S. Pellino3, a novel member of the Pellino protein family, promotes activation of c-Jun and Elk-1 and may act as a scaffolding protein. J. Immunol. 171, 1500–1506 (2003).

    CAS  PubMed  Google Scholar 

  34. Butler, M.P., Hanly, J.A. & Moynagh, P.N. Pellino3 is a novel upstream regulator of p38 MAPK and activates CREB in a p38-dependent manner. J. Biol. Chem. 280, 27759–27768 (2005).

    CAS  PubMed  Google Scholar 

  35. Chang, M., Jin, W. & Sun, S.C. Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat. Immunol. 10, 1089–1095 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang, M. et al. The ubiquitin ligase Peli1 negatively regulates T cell activation and prevents autoimmunity. Nat. Immunol. 12, 1002–1009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moynagh, P.N. Peli1 (rel)ieves autoimmunity. Nat. Immunol. 12, 927–929 (2011).

    CAS  PubMed  Google Scholar 

  38. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103, 8459–8464 (2006).

    CAS  PubMed  Google Scholar 

  39. Hardarson, H.S. et al. Toll-like receptor 3 is an essential component of the innate stress response in virus-induced cardiac injury. Am. J. Physiol. Heart Circ. Physiol. 292, H251–H258 (2007).

    CAS  PubMed  Google Scholar 

  40. Kawai, T. et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061–1068 (2004).

    CAS  PubMed  Google Scholar 

  41. Ning, S., Campos, A.D., Darnay, B.G., Bentz, G.L. & Pagano, J.S. TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitination-mediated activation by the tumor necrosis factor receptor family member latent membrane protein 1. Mol. Cell. Biol. 28, 6536–6546 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Konno, H. et al. TRAF6 establishes innate immune responses by activating NF-κB and IRF7 upon sensing cytosolic viral RNA and DNA. PLoS ONE 4, e5674 (2009).

    PubMed  PubMed Central  Google Scholar 

  43. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Walsh, M.C., Kim, G.K., Maurizio, P.L., Molnar, E.E. & Choi, Y. TRAF6 autoubiquitination-independent activation of the NF-κB and MAPK pathways in response to IL-1 and RANKL. PLoS ONE 3, e4064 (2008).

    PubMed  PubMed Central  Google Scholar 

  45. Xia, Z.P. et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461, 114–119 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Buettner, N. et al. Thogoto virus ML protein is a potent inhibitor of the interferon regulatory factor-7 transcription factor. J. Gen. Virol. 91, 220–227 (2010).

    CAS  PubMed  Google Scholar 

  47. Choubey, D. & Moudgil, K.D. Interferons in autoimmune and inflammatory diseases: regulation and roles. J. Interferon Cytokine Res. 31, 857–865 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Curran, N.M. et al. The synthetic cannabinoid R(+)WIN 55,212–2 inhibits the interleukin-1 signaling pathway in human astrocytes in a cannabinoid receptor-independent manner. J. Biol. Chem. 280, 35797–35806 (2005).

    CAS  PubMed  Google Scholar 

  49. Mellett, M., Atzei, P., Jackson, R., O′Neill, L.A. & Moynagh, P.N. Mal mediates TLR-induced activation of CREB and expression of IL-10. J. Immunol. 186, 4925–4935 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Science Foundation Ireland (07/IN.1/B972) and the Health Research Board of Ireland (under grant PhD/2007/09). We thank B. Cloak and S.Worrell for technical assistance with photomicroscopy, and M. Healy for assistance with flow cytometry.

Author information

Authors and Affiliations

Authors

Contributions

J.S., R.J. and M.M. developed the concept, designed and performed experiments, analyzed data and prepared the figures; N.D., S.Y., B.W. and L.S.T. designed and performed experiments and analyzed data; J.J.C. performed general pathology screening and the pathology-related experiments on heart samples; B.P.M. designed and supervised the EMCV infection studies; P.N.M. conceived the study, supervised the project, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Paul N Moynagh.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 734 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siednienko, J., Jackson, R., Mellett, M. et al. Pellino3 targets the IRF7 pathway and facilitates autoregulation of TLR3- and viral-induced expression of type I interferons. Nat Immunol 13, 1055–1062 (2012). https://doi.org/10.1038/ni.2429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing