Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds

Abstract

Plate tectonics plays a vital role in the evolution of our planet. Geochemical analysis of Earth’s oldest continental crust suggests that subduction may have begun episodically about 3.8 to 3.2 billion years ago, during the early Archaean or perhaps more than 3.8 billion years ago, during the Hadean. Yet, mantle rocks record evidence for modern-style plate tectonics beginning only in the late Archaean, about 3 billion years ago. Here we analyse the nitrogen abundance, as well as the nitrogen and carbon isotopic signatures of Archaean placer diamonds from the Kaapvaal craton, South Africa, which formed in the upper mantle 3.1 to 3.5 billion years ago. We find that the diamonds have enriched nitrogen contents and isotopic compositions compared with typical mantle values. This nitrogen geochemical fingerprint could have been caused by contamination of the mantle by nitrogen-rich Archaean sediments. Furthermore, the carbon isotopic signature suggests that the diamonds formed by reduction of an oxidized fluid or melt. Assuming that the Archaean mantle was more reduced than the modern mantle, we argue that the oxidized components were introduced to the mantle by crustal recycling at subduction zones. We conclude, on the basis of evidence from mantle-derived diamonds, that modern-style plate tectonics operated as early as 3.5 billion years ago.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Kaapvaal cratonic crust and lithospheric mantle age distributions compared with estimated formation of the Witwatersrand diamonds.
Figure 2: Cathodoluminescence image of Wits-15 revealing complex intra-diamond growth zonation and accompanying changes in carbon and nitrogen isotope compositions.
Figure 3: Carbon and nitrogen isotope compositions of the Wits diamonds and comparison with diamond data worldwide.

Similar content being viewed by others

References

  1. Condie, K. C. & Pease, V. in When Did Plate Tectonics Begin on Planet Earth? v–viii (The Geological Society of America, 2008).

  2. Foley, S. F. A reappraisal of redox melting in the Earth’s Mantle as a function of tectonic setting and time. J. Petrol. 52, 1363–1391 (2011).

    Article  Google Scholar 

  3. Shirey, S. B., Kamber, B. S., Whitehouse, M. J., Mueller, P. A. & Basu, A. R. A Review of the Isotopic and Trace Element Evidence for Mantle and Crustal Processes in the Hadean and Archean: implications for the Onset of Plate Tectonic Subduction GSA Special Papers 440, 1–29, (2008).

    Google Scholar 

  4. Næraa, T. et al. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago. Nature 485, 627–630 (2012).

    Article  Google Scholar 

  5. Furnes, H., de Wit, M. J., Staudigel, H., Rosing, M. & Muehlenbachs, K. A vestige of Earth’s oldest ophiolite. Science 315, 1704–1707 (2007).

    Article  Google Scholar 

  6. O’Neil, J., Francis, D. & Carlson, R. W. Implications of the Nuvvuagittuq greenstone belt for the formation of Earth’s early crust. J. Petrol. 52, 985–1009 (2011).

    Article  Google Scholar 

  7. Shirey, S. B. & Richardson, S. H. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

    Article  Google Scholar 

  8. Shirey, S. B. et al. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355–421 (2013).

    Article  Google Scholar 

  9. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014).

    Article  Google Scholar 

  10. Cartigny, P., Palot, M., Thomassot, E. & Harris, J. W. Diamond formation: a stable isotope perspective. Annu. Rev. Earth Planet. Sci. 42, 699–732 (2014).

    Article  Google Scholar 

  11. Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. Origin of diamonds in old enriched mantle. Nature 310, 198–202 (1984).

    Article  Google Scholar 

  12. Westerlund, K. J. et al. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re–Os isotope systematics. Contrib. Mineral. Petrol. 152, 275–294 (2006).

    Article  Google Scholar 

  13. Stachel, T., Banas, A., Muehlenbachs, K., Kurszlaukis, S. & Walker, E. C. Archean diamonds from Wawa (Canada): samples from deep cratonic roots predating cratonization of the Superior Province. Contrib. Mineral. Petrol. 151, 737–750 (2006).

    Article  Google Scholar 

  14. Stachel, T. & Harris, J. W. The origin of cratonic diamonds—Constraints from mineral inclusions. Ore Geol. Rev. 34, 5–32 (2008).

    Article  Google Scholar 

  15. Palot, M., Cartigny, P., Harris, J. W., Kaminsky, F. V. & Stachel, T. Evidence for deep mantle convection and primordial heterogeneity from nitrogen and carbon stable isotopes in diamond. Earth Planet. Sci. Lett. 357–358, 179–193 (2012).

    Article  Google Scholar 

  16. Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

    Article  Google Scholar 

  17. Marty, B., Alexander, C. M. O. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).

    Article  Google Scholar 

  18. Stachel, T., Harris, J. W. & Muehlenbachs, K. Sources of carbon in inclusion bearing diamonds. Lithos 112, 625–637 (2009).

    Article  Google Scholar 

  19. Cartigny, P. & Marty, B. Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013).

    Article  Google Scholar 

  20. Thomazo, C. & Papineau, D. Biogeochemical cycling of nitrogen on the early Earth. Elements 9, 345–351 (2013).

    Article  Google Scholar 

  21. Davies, G. F. Punctuated tectonic evolution of the Earth. Earth Planet. Sci. Lett. 136, 363–379 (1995).

    Article  Google Scholar 

  22. Thomassot, E., Cartigny, P., Harris, J. W. & Viljoen, K. S. F. Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet. Sci. Lett. 257, 362–371 (2007).

    Article  Google Scholar 

  23. Palot, M., Pearson, D. G., Stern, R. A., Stachel, T. & Harris, J. W. Isotopic constraints on the nature and circulation of deep mantle C–H–O–N fluids: carbon and nitrogen systematics within ultra-deep diamonds from Kankan (Guinea). Geochim. Cosmochim. Acta 139, 26–46 (2014).

    Article  Google Scholar 

  24. Petts, D. C., Chacko, T., T, S., Stern, R. A. & Heaman, L. M. A nitrogen isotope fractionation factor between diamond and its parental fluid derived from detailed SIMS analysis of a gem diamond and theoretical calculations. Chem. Geol. 410, 188–200 (2015).

    Article  Google Scholar 

  25. Cartigny, P., Harris, J. W. & Javoy, M. in The J.B. Dawson Volume: Proceedings of the VIIth International Kimberlite Conference Vol. 1 (eds Gurney, J. J., Gurney, J. L., Pascoe, M. D. & Richardson, S. H.) 117–124 (Red Roof Design, 1999).

    Google Scholar 

  26. Busigny, V. & Bebout, G. E. Nitrogen in the silicate Earth: speciation and isotopic behavior during mineral-fluid interactions. Elements 9, 353–358 (2013).

    Article  Google Scholar 

  27. Bebout, G. E. & Fogel, M. L. Nitrogen-isotope compositions of metasedimentary rocks in the Catalina Schist, California: implications for metamorphic devolatilization history. Geochim. Cosmochim. Acta 56, 2839–2849 (1992).

    Article  Google Scholar 

  28. Watenphul, A., Wunder, B. & Heinrich, W. High-pressure ammonium-bearing silicates: implications for nitrogen and hydrogen storage in the Earth’s mantle. Am. Mineral. 94, 283–292 (2009).

    Article  Google Scholar 

  29. Moyen, J.-F., Stevens, G. & Kisters, A. Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442, 559–562 (2006).

    Article  Google Scholar 

  30. Halama, R., Bebout, G. E., John, T. & Schenk, V. Nitrogen recycling in subducted oceanic lithosphere: the record in high- and ultrahigh-pressure metabasaltic rocks. Geochim. Cosmochim. Acta 74, 1636–1652 (2010).

    Article  Google Scholar 

  31. Kesson, S. E. & Ringwood, A. E. Slab-mantle interactions: 2. The formation of diamonds. Chem. Geol. 78, 97–118 (1989).

    Article  Google Scholar 

  32. Deines, P. The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrence and vapor composition. Geochim. Cosmochim. Acta 44, 943–961 (1980).

    Article  Google Scholar 

  33. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  34. Evans, K. A. The redox budget of subduction zones. Earth-Sci. Rev. 113, 11–32 (2012).

    Article  Google Scholar 

  35. Aulbach, S., Stachel, T., Viljoen, S. K., Brey, G. P. & Harris, J. W. Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib. Mineral. Petrol. 143, 56–70 (2002).

    Article  Google Scholar 

  36. Luth, R. W. & Stachel, T. The buffering capacity of lithospheric mantle: implications for diamond formation. Contrib. Mineral. Petrol. 168, 1083 (2014).

    Article  Google Scholar 

  37. O’Neill, C. & Wyman, D. A. in Archean Geodynamics and Environments Vol. 164 (eds Benn, K., Mareschal, J.-C. & Condie, K.C.) 177–188 (American Geophysical Union, 2006).

    Book  Google Scholar 

  38. Shirey, S. B., Richardson, S. H. & Harris, J. W. Integrated models of diamond formation and craton evolution. Lithos 77, 923–944 (2004).

    Article  Google Scholar 

  39. de Wit, M. J. et al. Formation of an Archaean continent. Nature 357, 553–562 (1992).

    Article  Google Scholar 

  40. Poujol, M., Robb, L. J., Anhaeusser, C. R. & Gericke, B. A review of the geochronological constraints on the evolution of the Kaapvaal Craton, South Africa. Precambrian Res. 127, 181–213 (2003).

    Article  Google Scholar 

  41. Tappe, S., Kjarsgaard, B. A., Kurszlaukis, S., Nowell, G. M. & Phillips, D. Petrology and Nd-Hf isotope geochemistry of the Neoproterozoic Amon Kimberlite Sills, Baffin Island (Canada): evidence for deep mantle magmatic activity linked to supercontinent cycles. J. Petrol. 55, 2003–2042 (2014).

    Article  Google Scholar 

  42. Zeh, A., Stern, R. A. & Gerdes, A. The oldest zircons of Africa-Their U-Pb-Hf-O isotope and trace element systematics, and implications for Hadean to Archean crust-mantle evolution. Precambrian Res. 241, 203–230 (2014).

    Article  Google Scholar 

  43. Boyd, S. R., Kiflawi, I. & Woods, G. S. Infrared absorption by the B nitrogen aggregate in diamond. Philos. Mag. B 72, 351–361 (1995).

    Article  Google Scholar 

  44. Boyd, S. R., Kiflawi, I. & Woods, G. S. The relationship between infrared absorption and the A defect concentration in diamond. Philos. Mag. B 69, 1149–1153 (1994).

    Article  Google Scholar 

  45. Stachel, T., Harris, J. W., Tappert, R. & Brey, G. P. Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71, 489–503 (2003).

    Article  Google Scholar 

  46. Stern, R. A. et al. Methods and Reference Materials for SIMS Diamond C- and N-isotope Analysis (Canadian Centre for Isotopic Microanalysis, 2014).

    Google Scholar 

Download references

Acknowledgements

We thank K. James and D. White at Museum Africa Johannesburg for access to the historical diamond collection; R. Gibson and B. Cairncross for facilitating the loan of the specimens; S. Connell and T. Mashepo for diamond sectioning; L. Blackwell for the assistance with the diamond imaging. We thank T. Stachel for use of the De Beers Diamond Laboratory at the University of Alberta and informative discussion. We thank C. Skinner of De Beers Exploration for sponsorship of this project. K.A.S. and S.T. acknowledge support from the CIMERA NRF-DST Centre of Excellence at the University of Johannesburg.

Author information

Authors and Affiliations

Authors

Contributions

K.A.S. and S.T. conceived the model and prepared the initial manuscript. R.A.S. carried out the SIMS carbon and nitrogen isotope, as well as nitrogen concentration analyses. K.A.S. conducted FTIR nitrogen analyses. All authors contributed to preparation of the final manuscript.

Corresponding author

Correspondence to Katie A. Smart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 14526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smart, K., Tappe, S., Stern, R. et al. Early Archaean tectonics and mantle redox recorded in Witwatersrand diamonds. Nature Geosci 9, 255–259 (2016). https://doi.org/10.1038/ngeo2628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing