Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia

Abstract

Constitutive activation of STAT5 is critical for the maintenance of chronic myeloid leukemia (CML) characterized by the BCR-ABL oncoprotein. Tyrosine kinase inhibitors (TKIs) for the STAT5-activating kinase JAK2 have been discussed as a treatment option for CML patients. Using murine leukemia models combined with inducible ablation of JAK2, we show JAK2 dependence for initial lymphoid transformation, which is lost once leukemia is established. In contrast, initial myeloid transformation and leukemia maintenance were independent of JAK2. Nevertheless, several JAK2 TKIs induced apoptosis in BCR-ABL+ cells irrespective of the presence of JAK2. This is caused by the previously unknown direct 'off-target' inhibition of BCR-ABL. Cellular and enzymatic analyses suggest that BCR-ABL phosphorylates STAT5 directly. Our findings suggest uncoupling of the canonical JAK2-STAT5 module upon BCR-ABL expression, thereby making JAK2 targeting dispensable. Thus, attempts to pharmacologically target STAT5 in BCR-ABL+ diseases need to focus on STAT5 itself.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combination treatment of JAK2 TKIs and imatinib in BCR-ABL+ human cell lines.
Figure 2: JAK2 is essential for initial lymphoid but not myeloid transformation.
Figure 3: JAK2 is not required for cell viability of transformed cells in vitro.
Figure 4: Deletion of Jak2 had no effect on lymphoid and myeloid leukemia development in vivo.
Figure 5: Deletion of Jak2 did not influence growth inhibition induced by JAK2 TKI treatment of BCR-ABL1+ cells.
Figure 6: Evidence that BCR-ABL phosphorylates STAT5.
Figure 7: BCR-ABL phosphorylated STAT5 with comparable efficiency to known BCR-ABL substrates.

Similar content being viewed by others

References

  1. Wong, S. & Witte, O.N. The BCR-ABL story: bench to bedside and back. Annu. Rev. Immunol. 22, 247–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Goldman, J.M. & Melo, J.V. Chronic myeloid leukemia–advances in biology and new approaches to treatment. N. Engl. J. Med. 349, 1451–1464 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Lugo, T.G., Pendergast, A.M., Muller, A.J. & Witte, O.N. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 247, 1079–1082 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov. 1, 493–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Weisberg, E., Manley, P.W., Cowan-Jacob, S.W., Hochhaus, A. & Griffin, J.D. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukemia. Nat. Rev. Cancer 7, 345–356 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Druker, B.J. et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 355, 2408–2417 (2006).

    CAS  PubMed  Google Scholar 

  7. Hochhaus, A. et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia 23, 1054–1061 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Shah, N.P. & Sawyers, C.L. Mechanisms of resistance to STI571 in Philadelphia chromosome-associated leukemias. Oncogene 22, 7389–7395 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Druker, B.J. Translation of the Philadelphia chromosome into therapy for CML. Blood 112, 4808–4817 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Nicolini, F.E. et al. Epidemiological study on survival of chronic myeloid leukemia (CML) and Ph+ acute lymphoblastic leukemia (ALL) patients with BCR-ABL T315I mutation. Blood 114, 5271–5278 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlesso, N., Frank, D.A. & Griffin, J.D. Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J. Exp. Med. 183, 811–820 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Ilaria, R.L. Jr. & Van Etten, R.A. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J. Biol. Chem. 271, 31704–31710 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Shuai, K., Halpern, J., ten Hoeve, J., Rao, X. & Sawyers, C.L. Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13, 247–254 (1996).

    CAS  PubMed  Google Scholar 

  14. Nieborowska-Skorska, M. et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J. Exp. Med. 189, 1229–1242 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scherr, M. et al. Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood 107, 3279–3287 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ye, D., Wolff, N., Li, L., Zhang, S. & Ilaria, R.L. Jr. STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood 107, 4917–4925 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoelbl, A. et al. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 107, 4898–4906 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Hoelbl, A. et al. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol. Med. 2, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Warsch, W. et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 117, 3409–3420 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Shuai, K. et al. Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell 76, 821–828 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Kisseleva, T., Bhattacharya, S., Braunstein, J. & Schindler, C.W. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285, 1–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Ihle, J.N. & Gilliland, D.G. Jak2: normal function and role in hematopoietic disorders. Curr. Opin. Genet. Dev. 17, 8–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kralovics, R. Genetic complexity of myeloproliferative neoplasms. Leukemia 22, 1841–1848 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Hedvat, M. et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16, 487–497 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyamoto, N. et al. The JAK2 inhibitor AG490 predominantly abrogates the growth of human B-precursor leukemic cells with 11q23 translocation or Philadelphia chromosome. Leukemia 15, 1758–1768 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Xie, S. et al. Involvement of Jak2 tyrosine phosphorylation in Bcr-Abl transformation. Oncogene 20, 6188–6195 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Samanta, A. et al. Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia 25, 463–472 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Samanta, A.K., Lin, H., Sun, T., Kantarjian, H. & Arlinghaus, R.B. Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res. 66, 6468–6472 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Pardanani, A. et al. JAK inhibitor therapy for myelofibrosis: critical assessment of value and limitations. Leukemia 25, 218–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Pardanani, A. et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 21, 1658–1668 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Wernig, G. et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 13, 311–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Geron, I. et al. Selective inhibition of JAK2-driven erythroid differentiation of polycythemia vera progenitors. Cancer Cell 13, 321–330 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Wagner, K.-U. et al. Impaired alveologenesis and maintenance of secretory mammary epithelial cells in Jak2 conditional knockout mice. Mol. Cell. Biol. 24, 5510–5520 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Neubauer, H. et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Samanta, A.K. et al. Jak2 inhibition deactivates Lyn kinase through the SET-PP2A–SHP1 pathway, causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients. Oncogene 28, 1669–1681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker, S.J., Rane, S.G. & Reddy, E.P. Hematopoietic cytokine receptor signaling. Oncogene 26, 6724–6737 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Blake, R.A. et al. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol. Cell. Biol. 20, 9018–9027 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rix, U. et al. Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib reveal novel kinase and non-kinase targets. Blood 110, 4055–4063 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Remsing Rix, L.L. et al. Global target profile of the kinase inhibitor bosutinib in primary chronic myeloid leukemia cells. Leukemia 23, 477–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Gouilleux, F., Wakao, H., Mundt, M. & Groner, B. Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 13, 4361–4369 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. de Jong, R., ten Hoeve, J., Heisterkamp, N. & Groffen, J. Tyrosine 207 in CRKL is the BCR/ABL phosphorylation site. Oncogene 14, 507–513 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Songyang, Z. et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signalling. Nature 373, 536–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Pardanani, A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia 22, 23–30 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Quintás-Cardama, A. et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115, 3109–3117 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lasho, T.L. et al. TG101348, a JAK2-selective antagonist, inhibits primary hematopoietic cells derived from myeloproliferative disorder patients with JAK2V617F, MPLW515K or JAK2 exon 12 mutations as well as mutation negative patients. Leukemia 22, 1790–1792 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Lim, W.A. & Pawson, T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142, 661–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Brehme, M. et al. Charting the molecular network of the drug target Bcr-Abl. Proc. Natl. Acad. Sci. USA 106, 7414–7419 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Titz, B. et al. The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Oncogene 29, 5895–5910 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nelson, E.A. et al. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 117, 3421–3429 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112, 845–857 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants WWTF-LS037 and SFB-28-10 to V.S. and GenAU-PLACEBO to G.S.-F. and V.S. We thank S. Georgeon for expert technical assistance. We thank all members of participating laboratories and R. Moriggl and T. Decker for continuous support and discussions.

Author information

Authors and Affiliations

Authors

Contributions

O.H. did the experiments in Figures 5d,e, 6b–f and 7. W.W. did the experiments in Figures 1, 2d,e, 3b–e, 4b–e, 5a–c,g and 6a. E.E. did the experiments in Figures 2a,b, 3a and 4a. I.K. provided technical assistance and vital tools for experiments in Figures 5d,e, 6b–f and 7. F.G. did the experiments in Figure 2c. K.-U.W. provided the conditional Jak2 knockout mice. G.S.-F. and V.S. designed the experiments and interpreted the data. O.H., W.W., G.S.-F. and V.S. wrote the manuscript.

Corresponding authors

Correspondence to Giulio Superti-Furga or Veronika Sexl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 2523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hantschel, O., Warsch, W., Eckelhart, E. et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol 8, 285–293 (2012). https://doi.org/10.1038/nchembio.775

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.775

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research