Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A synthetic lethal approach for compound and target identification in Staphylococcus aureus

Abstract

The majority of bacterial proteins are dispensable for growth in the laboratory but nevertheless have important physiological roles. There are no systematic approaches to identify cell-permeable small-molecule inhibitors of these proteins. We demonstrate a strategy to identify such inhibitors that exploits synthetic lethal relationships both for small-molecule discovery and for target identification. Applying this strategy in Staphylococcus aureus, we have identified a compound that inhibits DltB, a component of the teichoic acid D-alanylation machinery that has been implicated in virulence. This D-alanylation inhibitor sensitizes S. aureus to aminoglycosides and cationic peptides and is lethal in combination with a wall teichoic acid inhibitor. We conclude that DltB is a druggable target in the D-alanylation pathway. More broadly, the work described demonstrates a systematic method to identify biologically active inhibitors of major bacterial processes that can be adapted to numerous organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The S. aureus cell envelope is a complex system that includes numerous components and interactions that are poorly understood.
Figure 2: PCA of high-throughput screening data enables rapid identification of strain-selective growth inhibitors.
Figure 3: The target of amsacrine was identified by exploiting synthetic lethality.
Figure 4: Amsacrine inhibits incorporation of 14C-D-alanine into LTA in wild-type S. aureus but not in dltB mutants.
Figure 5: Amsacrine potentiates activity of aminoglycosides.
Figure 6: Synthetic lethal chemical genetic discovery cycle identifies mutant-selective inhibitors and their targets.

Similar content being viewed by others

References

  1. Hung, D.T. & Rubin, E.J. Chemical biology and bacteria: not simply a matter of life or death. Curr. Opin. Chem. Biol. 10, 321–326 (2006).

    CAS  PubMed  Google Scholar 

  2. Mitchison, T.J. Towards a pharmacological genetics. Chem. Biol. 1, 3–6 (1994).

    CAS  PubMed  Google Scholar 

  3. Chung, H.S. et al. Rapid β-lactam–induced lysis requires successful assembly of the cell division machinery. Proc. Natl. Acad. Sci. USA 106, 21872–21877 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kitano, K. & Tomasz, A. Triggering of autolytic cell wall degradation in Escherichia coli by β-lactam antibiotics. Antimicrob. Agents Chemother. 16, 838–848 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho, H., Uehara, T. & Bernhardt, T.G. β-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159, 1300–1311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Garner, E.C. et al. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333, 222–225 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schirner, K. et al. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB. Nat. Chem. Biol. 11, 38–45 (2015).

    CAS  PubMed  Google Scholar 

  8. van Teeffelen, S. et al. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. USA 108, 15822–15827 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Domínguez-Escobar, J. et al. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333, 225–228 (2011).

    PubMed  Google Scholar 

  10. Wright, G.D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186 (2007).

    CAS  PubMed  Google Scholar 

  11. Le Meur, N. & Gentleman, R. Modeling synthetic lethality. Genome Biol. 9, R135 (2008).

    PubMed  PubMed Central  Google Scholar 

  12. Typas, A. et al. A tool-kit for high-throughput, quantitative analyses of genetic interactions in E. coli. Nat. Methods 5, 781–787 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Butland, G. et al. eSGA: E. coli synthetic genetic array analysis. Nat. Methods 5, 789–795 (2008).

    CAS  PubMed  Google Scholar 

  14. Tong, A.H.Y. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    CAS  PubMed  Google Scholar 

  15. Santa Maria, J.P. et al. Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl. Acad. Sci. USA 111, 12510–12515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McLornan, D.P., List, A. & Mufti, G.J. Applying synthetic lethality for the selective targeting of cancer. N. Engl. J. Med. 371, 1725–1735 (2014).

    CAS  PubMed  Google Scholar 

  17. Brown, S., Santa Maria, J.P. & Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 67, 313–336 (2013).

    CAS  PubMed  Google Scholar 

  18. Schlag, M. et al. Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol. Microbiol. 75, 864–873 (2010).

    CAS  PubMed  Google Scholar 

  19. Atilano, M.L. et al. Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 107, 18991–18996 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Campbell, J. et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem. Biol. 6, 106–116 (2011).

    CAS  PubMed  Google Scholar 

  21. Weidenmaier, C. et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat. Med. 10, 243–245 (2004).

    CAS  PubMed  Google Scholar 

  22. Neuhaus, F.C. & Baddiley, J. A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in Gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 686–723 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Collins, L.V. et al. Staphylococcus aureus strains lacking D-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J. Infect. Dis. 186, 214–219 (2002).

    CAS  PubMed  Google Scholar 

  24. Santiago, M. et al. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 16, 252 (2015).

    PubMed  PubMed Central  Google Scholar 

  25. van Opijnen, T. & Camilli, A. Transposon insertion sequencing: a new tool for systems-level analysis of microorganisms. Nat. Rev. Microbiol. 11, 435–442 (2013).

    CAS  PubMed  Google Scholar 

  26. Percy, M.G. & Gründling, A. Lipoteichoic acid synthesis and function in gram-positive bacteria. Annu. Rev. Microbiol. 68, 81–100 (2014).

    CAS  PubMed  Google Scholar 

  27. Falord, M., Karimova, G., Hiron, A. & Msadek, T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 56, 1047–1058 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fridman, M. et al. Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry 52, 7975–7986 (2013).

    CAS  PubMed  Google Scholar 

  29. Ketron, A.C., Denny, W.A., Graves, D.E. & Osheroff, N. Amsacrine as a topoisomerase II poison: importance of drug-DNA interactions. Biochemistry 1, 1730–1739 (2012).

    Google Scholar 

  30. Nelson, E.M., Tewey, K.M. & Liu, L.F. Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4′-(9-acridinylamino)-methanesulfon-m-anisidide. Proc. Natl. Acad. Sci. USA 81, 1361–1365 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Fey, P.D. et al. A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4, e00537–e12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Poyart, C. et al. Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl–lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol. Microbiol. 49, 1615–1625 (2003).

    CAS  PubMed  Google Scholar 

  33. Peschel, A. et al. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274, 8405–8410 (1999).

    CAS  PubMed  Google Scholar 

  34. Hunt, C.L., Nauseef, W.M. & Weiss, J.P. Effect of D-alanylation of (lipo)teichoic acids of Staphylococcus aureus on host secretory phospholipase A2 action before and after phagocytosis by human neutrophils. J. Immunol. 176, 4987–4994 (2006).

    CAS  PubMed  Google Scholar 

  35. Peschel, A., Vuong, C., Otto, M. & Götz, F. The D-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob. Agents Chemother. 44, 2845–2847 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. May, J.J. et al. Inhibition of the D-alanine: D-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium's susceptibility to antibiotics that target the cell wall. FEBS J. 272, 2993–3003 (2005).

    CAS  PubMed  Google Scholar 

  37. Reichmann, N.T., Picarra Cassona, C. & Gründling, A. Revised mechanism of D-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology 159, 1868–1877 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Taylor, M.S. et al. Architectural organization of the metabolic regulatory enzyme ghrelin O-acyltransferase. J. Biol. Chem. 288, 32211–32228 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruiz, N., Falcone, B., Kahne, D. & Silhavy, T.J. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121, 307–317 (2005).

    CAS  PubMed  Google Scholar 

  40. Santa Maria, J.P. et al. Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc. Natl. Acad. Sci. USA 111, 12510–12515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cain, B.F., Seelye, R.N. & Atwell, G.J. Potential antitumor agents 14. Acridylmethanesulfonanilides. J. Med. Chem. 17, 922–930 (1974).

    CAS  PubMed  Google Scholar 

  42. Santiago, M. et al. A new platform for ultra-high density Staphylococcus aureus transposon libraries. BMC Genomics 16, 252 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. Goecks, J., Nekrutenko, A. & Taylor, J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Blankenberg, D. et al. Galaxy: a web-based genome analysis tool for experimentalists. Curr. Protoc. Mol. Biol. 89, 19.10.1–19.10.21 (2010).

    Google Scholar 

  45. Giardine, B. et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15, 1451–1455 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Campbell, J. et al. Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem. Biol. 6, 106–116 (2011).

    CAS  PubMed  Google Scholar 

  48. Takatsuki, A., Arima, K. & Tamura, G. Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J. Antibiot. (Tokyo) 24, 215–223 (1971).

    CAS  Google Scholar 

  49. Pan, X.S. & Fisher, L.M. Streptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones. Antimicrob. Agents Chemother. 43, 1129–1136 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  51. Corrigan, R.M., Abbott, J.C., Burhenne, H., Kaever, V. & Gründling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7, e1002217 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. Pang (Department of Microbiology and Immunobiology, Harvard Medical School) for providing plasmids and other reagents; C. Shamu, J. Smith and the staff at the ICCB-Longwood Screening Facility for compound screening; and the Harvard Medical School Biopolymers Facility and the Tufts University Core Facility for sequencing. This work was funded by U.S. National Institutes of Health grants U19AI109764 to S.W. and T.C.M., U54AI057159 to the ICCB-L Screening Facility, P01AI083214 and R01AI099144 to S.W. and F32AI118160 to S.H.M.

Author information

Authors and Affiliations

Authors

Contributions

L.P. and J.P.S.M. performed the chemical screen; T.C.M. and M.S. prepared the transposon library; L.P., L.M.M., T.C.M. and M.S. performed the Tn-seq experiments; W.L. constructed the ΔypfP mutant used for validation; L.P. selected for resistance mutations and analyzed whole genome sequences; B.M.W. performed LTA D-alanylation and gyrase assays; S.H.M. constructed complementation mutants; L.M.M. carried out MIC and spot dilution assays; and S.E.S.M. synthesized o-AMSA. S.W. designed and supervised the project, and figure design, preparation, and writing was primarily done by L.P. and S.W. with important contributions from L.M.M., J.P.S.M. and B.M.W. All of the authors edited the manuscript.

Corresponding author

Correspondence to Suzanne Walker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–12. (PDF 1486 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquina, L., Santa Maria, J., McKay Wood, B. et al. A synthetic lethal approach for compound and target identification in Staphylococcus aureus. Nat Chem Biol 12, 40–45 (2016). https://doi.org/10.1038/nchembio.1967

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1967

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research