Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors

Abstract

The ability of the nicotinic acetylcholine receptor (nAChR) to undergo conformational transitions is exquisitely sensitive to its surrounding lipid environment. Previous work has highlighted a conformational selection mechanism, whereby different lipids stabilize different proportions of activatable resting versus nonactivatable conformations. In the absence of anionic lipids and cholesterol, the nAChR adopts an uncoupled conformation, which binds agonist with resting state–like affinity but does not usually undergo agonist-induced conformational transitions. Very slow (minutes to hours) transitions from uncoupled to coupled (resting, open and/or desensitized) conformations, however, can occur in membranes with relatively thick hydrophobic cores. Increasing membrane hydrophobic thickness 'awakens' uncoupled nAChRs by reducing the large activation energy barrier (or barriers) leading to coupled states, thus allowing conformational transitions to occur on an experimentally tractable timescale. Lipids shape activity by modulating the relative proportions of activatable versus nonactivatable conformations and by controlling the transitions between uncoupled and coupled conformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: nAChR structure and lipid-nAChR interactions.
Figure 2: Effect of membrane hydrophobic thickness on nAChR structure and thermal stability.
Figure 3: Effect of hydrophobic mismatch on nAChR conformational transitions.
Figure 4: Effects of anionic lipids on nAChR structure and conformational transitions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Baenziger, J.E. & Corringer, P.J. 3D structure and allosteric modulation of the transmembrane domain of pentameric ligand-gated ion channels. Neuropharmacology 60, 116–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Barrantes, F.J. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res. Brain Res. Rev. 47, 71–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Fong, T.M. & McNamee, M.G. Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25, 830–840 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Sunshine, C. & McNamee, M.G. Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim. Biophys. Acta 1191, 59–64 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Brannigan, G., Henin, J., Law, R., Eckenhoff, R. & Klein, M.L. Embedded cholesterol in the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 105, 14418–14423 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ryan, S.E., Demers, C.N., Chew, J.P. & Baenziger, J.E. Structural effects of neutral and anionic lipids on the nicotinic acetylcholine receptor. An infrared difference spectroscopy study. J. Biol. Chem. 271, 24590–24597 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Hamouda, A.K., Sanghvi, M., Sauls, D., Machu, T.K. & Blanton, M.P. Assessing the lipid requirements of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 45, 4327–4337 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. daCosta, C.J. & Baenziger, J.E. A lipid-dependent uncoupled conformation of the acetylcholine receptor. J. Biol. Chem. 284, 17819–17825 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li, P. & Steinbach, J.H. The neuronal nicotinic α4β2 receptor has a high maximal probability of being open. Br. J. Pharmacol. 160, 1906–1915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vallejo, Y.F., Buisson, B., Bertrand, D. & Green, W.N. Chronic nicotine exposure upregulates nicotinic receptors by a novel mechanism. J. Neurosci. 25, 5563–5572 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4Å resolution. J. Mol. Biol. 346, 967–989 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Baenziger, J.E. & daCosta, C.J.B. Molecular mechanisms of acetylcholine receptor-lipid interactions: from model membranes to human biology. Biophys. Rev. 5, 1–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, A.G. How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Holt, A. & Killian, J.A. Orientation and dynamics of transmembrane peptides: the power of simple models. Eur. Biophys. J. 39, 609–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Andersen, O.S. & Koeppe, R.E., II. Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Jensen, M.Ø. & Mouritsen, O.G. Lipids do influence protein function-the hydrophobic matching hypothesis revisited. Biochim. Biophys. Acta 1666, 205–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. De Almeida, R.F. et al. Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function. Mol. Membr. Biol. 23, 305–315 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Herz, J.M., Johnson, D.A. & Taylor, P. Interaction of noncompetitive inhibitors with the acetylcholine receptor. The site specificity and spectroscopic properties of ethidium binding. J. Biol. Chem. 262, 7238–7247 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Heidmann, T., Sobel, A., Popot, J.L. & Changeux, J.P. Reconstitution of a functional acetylcholine receptor. Conservation of the conformational and allosteric transitions and recovery of the permeability response; role of lipids. Eur. J. Biochem. 110, 35–55 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Méthot, N., Demers, C.N. & Baenziger, J.E. Structure of both the ligand- and lipid-dependent channel-inactive states of the nicotinic acetylcholine receptor probed by FTIR spectroscopy and hydrogen exchange. Biochemistry 34, 15142–15149 (1995).

    Article  PubMed  Google Scholar 

  21. Méthot, N., McCarthy, M.P. & Baenziger, J.E. Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel. Biochemistry 33, 7709–7717 (1994).

    Article  PubMed  Google Scholar 

  22. daCosta, C.J., Michel Sturgeon, R., Hamouda, A.K., Blanton, M.P. & Baenziger, J.E. Structural characterization and agonist binding to human α4β2 nicotinic receptors. Biochem. Biophys. Res. Commun. 407, 456–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Baenziger, J.E. & Méthot, N. Fourier transform infrared and hydrogen/deuterium exchange reveal an exchange-resistant core of α-helical peptide hydrogens in the nicotinic acetylcholine receptor. J. Biol. Chem. 270, 29129–29137 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Baenziger, J.E., Miller, K.W. & Rothschild, K.J. Fourier transform infrared difference spectroscopy of the nicotinic acetylcholine receptor: evidence for specific protein structural changes upon desensitization. Biochemistry 32, 5448–5454 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Ryan, S.E., Hill, D.G. & Baenziger, J.E. Dissecting the chemistry of nicotinic receptor-ligand interactions with infrared difference spectroscopy. J. Biol. Chem. 277, 10420–10426 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Baenziger, J.E. et al. Lipid composition alters drug action at the nicotinic acetylcholine receptor. Mol. Pharmacol. 73, 880–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Ryan, S.E. & Baenziger, J.E. A structure-based approach to nicotinic receptor pharmacology. Mol. Pharmacol. 55, 348–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. daCosta, C.J., Ogrel, A.A., McCardy, E.A., Blanton, M.P. & Baenziger, J.E. Lipid-protein interactions at the nicotinic acetylcholine receptor. A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J. Biol. Chem. 277, 201–208 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. daCosta, C.J. et al. Anionic lipids allosterically modulate multiple nicotinic acetylcholine receptor conformational equilibria. J. Biol. Chem. 284, 33841–33849 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Corringer, P.J. et al. Structure and pharmacology of pentameric receptor channels: from bacteria to brain. Structure 20, 941–956 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Herz, J.M., Kolb, S.J., Erlinger, T. & Schmid, E. Channel permeant cations compete selectively with noncompetitive inhibitors of the nicotinic acetylcholine receptor. J. Biol. Chem. 266, 16691–16698 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Jones, O.T. & McNamee, M.G. Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27, 2364–2374 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Lundbæk, J.A., Andersen, O.S., Werge, T. & Nielsen, C. Cholesterol-induced protein sorting: an analysis of energetic feasibility. Biophys. J. 84, 2080–2089 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rankin, S.E., Addona, G.H., Kloczewiak, M.A., Bugge, B. & Miller, K.W. The cholesterol dependence of activation and fast desensitization of the nicotinic acetylcholine receptor. Biophys. J. 73, 2446–2455 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kučerka, N., Tristram-Nagle, S. & Nagle, J.F. Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 208, 193–202 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Rawicz, W., Olbrich, K.C., McIntosh, T., Needham, D. & Evans, E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79, 328–339 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blume, A., Hubner, W. & Messner, G. Fourier transform infrared spectroscopy of 13C=O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 27, 8239–8249 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Sturgeon, R.M. & Baenziger, J.E. Cations mediate interactions between the nicotinic acetylcholine receptor and anionic lipids. Biophys. J. 98, 989–998 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmidt, D., del Marmol, J. & MacKinnon, R. Mechanistic basis for low threshold mechanosensitivity in voltage-dependent K+ channels. Proc. Natl. Acad. Sci. USA 109, 10352–10357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Greisen, P. Jr. et al. Linear rate-equilibrium relations arising from ion channel-bilayer energetic coupling. Proc. Natl. Acad. Sci. USA 108, 12717–12722 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cymes, G.D. & Grosman, C. Pore-opening mechanism of the nicotinic acetylcholine receptor evinced by proton transfer. Nat. Struct. Mol. Biol. 15, 389–396 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Unwin, N. & Fujiyoshi, Y. Gating movement of acetylcholine receptor caught by plunge-freezing. J. Mol. Biol. 422, 617–634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu, Y. et al. Conformational dynamics of the nicotinic acetylcholine receptor channel: a 35-ns molecular dynamics simulation study. J. Am. Chem. Soc. 127, 1291–1299 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Haeger, S. et al. An intramembrane aromatic network determines pentameric assembly of Cys-loop receptors. Nat. Struct. Mol. Biol. 17, 90–98 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Doyle, D.A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. de Planque, M.R. & Killian, J.A. Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring. Mol. Membr. Biol. 20, 271–284 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Gleason, N.J. et al. Tyrosine replacing tryptophan as an anchor in GWALP peptides. Biochemistry 51, 2044–2053 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Borroni, V. & Barrantes, F.J. Cholesterol modulates the rate and mechanism of acetylcholine receptor internalization. J. Biol. Chem. 286, 17122–17132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baier, C.J., Gallegos, C.E., Levi, V. & Barrantes, F.J. Cholesterol modulation of nicotinic acetylcholine receptor surface mobility. Eur. Biophys. J. 39, 213–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Bretscher, M.S. & Munro, S. Cholesterol and the Golgi apparatus. Science 261, 1280–1281 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Labriola, J.M. et al. Phospholipase C activity affinity purifies with the Torpedo nicotinic acetylcholine receptor. J. Biol. Chem. 285, 10337–10343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by research grants 12197 and 111243 to J.E.B. from the Canadian Institutes of Health Research (CIHR) as well as a CIHR Fellowship to C.J.B.d.

Author information

Authors and Affiliations

Authors

Contributions

J.E.B. and C.J.B.d. designed the research. C.J.B.d., L.D. and J.P.D.T. performed purifications and reconstitutions and both IR and fluorescence experiments. J.E.B., C.J.B.d., L.D. and J.P.D.T. analyzed the data. J.E.B. and C.J.B.d. wrote the paper, with J.E.B. and J.P.D.T. generating the figures.

Corresponding author

Correspondence to John E Baenziger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–10. (PDF 1507 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

daCosta, C., Dey, L., Therien, J. et al. A distinct mechanism for activating uncoupled nicotinic acetylcholine receptors. Nat Chem Biol 9, 701–707 (2013). https://doi.org/10.1038/nchembio.1338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1338

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing