Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling between endocytosis and sphingosine kinase 1 recruitment

Abstract

Genetic studies have suggested a functional link between cholesterol/sphingolipid metabolism and endocytic membrane traffic. Here we show that perturbing the cholesterol/sphingomyelin balance in the plasma membrane results in the massive formation of clusters of narrow endocytic tubular invaginations positive for N-BAR proteins. These tubules are intensely positive for sphingosine kinase 1 (SPHK1). SPHK1 is also targeted to physiologically occurring early endocytic intermediates, and is highly enriched in nerve terminals, which are cellular compartments specialized for exo/endocytosis. Membrane recruitment of SPHK1 involves a direct, curvature-sensitive interaction with the lipid bilayer mediated by a hydrophobic patch on the enzyme’s surface. The knockdown of SPHKs results in endocytic recycling defects, and a mutation that disrupts the hydrophobic patch of Caenorhabditis elegans SPHK fails to rescue the neurotransmission defects in loss-of-function mutants of this enzyme. Our studies support a role for sphingosine phosphorylation in endocytic membrane trafficking beyond the established function of sphingosine-1-phosphate in intercellular signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acute perturbation of plasma membrane cholesterol induces massive endocytic tubular invaginations positive for N-BAR proteins.
Figure 2: Acute hydrolysis of plasma membrane sphingomyelin also induces massive endocytic tubular invaginations positive for N-BAR proteins.
Figure 3: The sphingoid-base-modifying enzyme, SPHK1, is recruited to the tubular endocytic invaginations.
Figure 4: Recruitment of SPHK1 to physiologically occurring endocytic intermediates.
Figure 5: SPHK1 directly binds to negatively charged membranes with a preference for high positive curvature.
Figure 6: SPHK1 is concentrated at synapses, and mutations that abolish membrane binding do not rescue synaptic transmission defects of loss-of-function mutants.

Similar content being viewed by others

References

  1. Breslow, D. K. & Weissman, J. S. Membranes in balance: Mechanisms of sphingolipid homeostasis. Mol. Cell 40, 267–279 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Simons, K. & Sampaio, J. L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rodal, S. K. et al. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10, 961–974 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Subtil, A. et al. Acute cholesterol depletion inhibits clathrin-coated pit budding. Proc. Natl Acad. Sci. USA 96, 6775–6780 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sigismund, S. et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell 15, 209–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Hannich, J. T., Umebayashi, K. & Riezman, H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb. Perspect. Biol. 3 (2011).

  7. Thiele, C., Hannah, M. J., Fahrenholz, F. & Huttner, W. B. Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nat. Cell Biol. 2, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Dason, J. S., Smith, A. J., Marin, L. & Charlton, M. P. Vesicular sterols are essential for synaptic vesicle cycling. J. Neurosci. 30, 15856–15865 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rohrbough, J. et al. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789–7803 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chan, J. P., Hu, Z. & Sieburth, D. Recruitment of sphingosine kinase to presynaptic terminals by a conserved muscarinic signaling pathway promotes neurotransmitter release. Genes Dev. 26, 1070–1085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan, J. P. & Sieburth, D. Localized sphingolipid signaling at presynaptic terminals is regulated by calcium influx and promotes recruitment of priming factors. J. Neurosci. 32, 17909–17920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Acharya, U. & Acharya, J. K. Enzymes of sphingolipid metabolism in Drosophila melanogaster. Cell. Mol. Life Sci. 62, 128–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Yonamine, I. et al. Sphingosine kinases and their metabolites modulate endolysosomal trafficking in photoreceptors. J. Cell Biol. 192, 557–567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frost, A., Unger, V. M. & De Camilli, P. The BAR domain superfamily: Membrane-molding macromolecules. Cell 137, 191–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gallop, J. L. & McMahon, H. T. BAR domains and membrane curvature: Bringing your curves to the BAR. Biochem. Soc. Symp. 72, 223–231 (2005).

    Article  CAS  Google Scholar 

  16. Shen, H., Pirruccello, M. & De Camilli, P. SnapShot: Membrane curvature sensors and generators. Cell 150, 1300–1302 (2012).

    Article  PubMed  Google Scholar 

  17. Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Perera, R. M., Zoncu, R., Lucast, L., De Camilli, P. & Toomre, D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl Acad. Sci. USA 103, 19332–19337 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Milosevic, I. et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72, 587–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Desfarges, L. et al. Yeast mutants affected in viability upon starvation have a modified phospholipid composition. Yeast 9, 267–277 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Morgan, J. et al. Altering sphingolipid metabolism in Saccharomyces cerevisiae cells lacking the amphiphysin ortholog Rvs161 reinitiates sugar transporter endocytosis. Eukaryot. Cell 8, 779–789 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aguilar, P. S. et al. A plasma-membrane E-MAP reveals links of the eisosome with sphingolipid metabolism and endosomal trafficking. Nat. Struct. Mol. Biol. 17, 901–908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zidovetzki, R. & Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim. Biophys. Acta 1768, 1311–1324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brunaldi, K., Huang, N. & Hamilton, J. A. Fatty acids are rapidly delivered to and extracted from membranes by methyl-beta-cyclodextrin. J. Lipid Res. 51, 120–131 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Kay, J. G., Koivusalo, M., Ma, X., Wohland, T. & Grinstein, S. Phosphatidylserine dynamics in cellular membranes. Mol. Biol. Cell 23, 2198–2212 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mim, C. et al. Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149, 137–145 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, R. J. et al. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J. Cell Sci. 126, 5305–5312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ramstedt, B. & Slotte, J. P. Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim. Biophys. Acta 1758, 1945–1956 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Mizugishi, K. et al. Essential role for sphingosine kinases in neural and vascular development. Mol. Cell Biol. 25, 11113–11121 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Johnson, K. R., Becker, K. P., Facchinetti, M. M., Hannun, Y. A. & Obeid, L. M. PKC-dependent activation of sphingosine kinase 1 and translocation to the plasma membrane. Extracellular release of sphingosine-1-phosphate induced by phorbol 12-myristate 13-acetate (PMA). J. Biol. Chem. 277, 35257–35262 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Ter Braak, M. et al. Galpha(q)-mediated plasma membrane translocation of sphingosine kinase-1 and cross-activation of S1P receptors. Biochim. Biophys. Acta 1791, 357–370 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Hayashi, S. et al. Identification and characterization of RPK118, a novel sphingosine kinase-1-binding protein. J. Biol. Chem. 277, 33319–33324 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Kusner, D. J. et al. The localization and activity of sphingosine kinase 1 are coordinately regulated with actin cytoskeletal dynamics in macrophages. J. Biol. Chem. 282, 23147–23162 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Thompson, C. R. et al. Sphingosine kinase 1 (SK1) is recruited to nascent phagosomes in human macrophages: Inhibition of SK1 translocation by mycobacterium tuberculosis. J. Immunol. 174, 3551–3561 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Collinet, C. et al. Systems survey of endocytosis by multiparametric image analysis. Nature 464, 243–249 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Sutherland, C. M. et al. The calmodulin-binding site of sphingosine kinase and its role in agonist-dependent translocation of sphingosine kinase 1 to the plasma membrane. J. Biol. Chem. 281, 11693–11701 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Jarman, K. E., Moretti, P. A., Zebol, J. R. & Pitson, S. M. Translocation of sphingosine kinase 1 to the plasma membrane is mediated by calcium- and integrin-binding protein 1. J. Biol. Chem. 285, 483–492 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Stahelin, R. V. et al. The mechanism of membrane targeting of human sphingosine kinase 1. J. Biol. Chem. 280, 43030–43038 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Delon, C. et al. Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J. Biol. Chem. 279, 44763–44774 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Olivera, A. & Spiegel, S. Sphingosine kinase assay and product analysis. Methods Mol. Biol. 105, 233–242 (1998).

    CAS  PubMed  Google Scholar 

  46. Wang, Z. et al. Molecular basis of sphingosine kinase 1 substrate recognition and catalysis. Structure 21, 798–809 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Kajimoto, T. et al. Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Mol. Cell Biol. 27, 3429–3440 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Hao, M., Mukherjee, S. & Maxfield, F. R. Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Natl Acad. Sci. USA 98, 13072–13077 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nishimura, S. Y., Vrljic, M., Klein, L. O., McConnell, H. M. & Moerner, W. E. Cholesterol depletion induces solid-like regions in the plasma membrane. Biophys. J. 90, 927–938 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Vrljic, M., Nishimura, S. Y., Moerner, W. E. & McConnell, H. M. Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys. J. 88, 334–347 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Kirchhausen, T. Bending membranes. Nat. Cell Biol. 14, 906–908 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Antonny, B. Mechanisms of membrane curvature sensing. Annu. Rev. Biochem. 80, 101–123 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huitema, K., van den Dikkenberg, J., Brouwers, J. F. & Holthuis, J. C. Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, B., Hassler, D. F., Smith, G. K., Weaver, K. & Hannun, Y. A. Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain. J. Biol. Chem. 273, 34472–34479 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Tani, M. & Hannun, Y. A. Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J. Biol. Chem. 282, 10047–10056 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. El Bawab, S., Bielawska, A. & Hannun, Y. A. Purification and characterization of a membrane-bound nonlysosomal ceramidase from rat brain. J. Biol. Chem. 274, 27948–27955 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Tani, M., Iida, H. & Ito, M. O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein. J. Biol. Chem. 278, 10523–10530 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Garcia-Pacios, M. et al. Sphingosine-1-phosphate as an amphipathic metabolite: Its properties in aqueous and membrane environments. Biophys. J. 97, 1398–1407 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mao, C., Wadleigh, M., Jenkins, G. M., Hannun, Y. A. & Obeid, L. M. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J. Biol. Chem. 272, 28690–28694 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Bandhuvula, P. & Saba, J. D. Sphingosine-1-phosphate lyase in immunity and cancer: Silencing the siren. Trends Mol. Med. 13, 210–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Nakahara, K. et al. The Sjogren-Larsson syndrome gene encodes a hexadecenal dehydrogenase of the sphingosine 1-phosphate degradation pathway. Mol. Cell 46, 461–471 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, M. J. et al. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279, 1552–1555 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Todaro, G. J. & Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell. Biol. 17, 299–313 (1963).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shen, H. et al. Constitutive activated Cdc42-associated kinase (Ack) phosphorylation at arrested endocytic clathrin-coated pits of cells that lack dynamin. Mol. Biol. Cell 22, 493–502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hammond, G. R., Schiavo, G. & Irvine, R. F. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem. J. 422, 23–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Liang, L., Shen, H., De Camilli, P. & Duncan, J. S. Tracking clathrin coated pits with a multiple hypothesis based method. Med. Image Comput. Comput. Assist. Interv. 13, 315–322 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Slot, J. W. & Geuze, H. J. Cryosectioning and immunolabeling. Nat. Protoc. 2, 2480–2491 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Zhu, C., Das, S. L. & Baumgart, T. Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Biophys. J. 102, 1837–1845 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mathivet, L., Cribier, S. & Devaux, P. F. Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys. J. 70, 1112–1121 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schrodinger, LLC The PyMOL Molecular Graphics System. (2010)

  75. Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179, 125–142 (1984).

    Article  CAS  PubMed  Google Scholar 

  76. Baker, N. A., Sept, D., Joseph, S., Holst, M. J. & McCammon, J. A. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA 98, 10037–10041 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsuda, T. & Cepko, C. L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA 101, 16–22 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Liang and J. Duncan (Yale University) for help with the automatic tracking of clathrin-coated pits dynamics, S. Ferguson, A. Frost and T. Walther for discussion and advice, J. Baskin for thorough reading of the manuscript, F. Wilson, L. Lucast, L. Liu and H. Czapla for outstanding technical support, M. Graham, X. Liu and S. Wilson for help with microscopy experiments, and members of T. Walther, T. Melia and C. Burd laboratories (Yale University) for help with lipid experiments. We also acknowledge the help of the Yale Center for Cellular and Molecular Imaging and Yale Center for Genomics and Proteomics. This work was supported in part by grants from the NIH (NS36251, DK45735 and DA018343 to P.D.C., GM097552 to T.B., and NS071085 to D.S.) and from the Ellison Medical Foundation to P.D.C.

Author information

Authors and Affiliations

Authors

Contributions

H.S. and P.D.C. designed the experiments and wrote the manuscript; H.S. performed the experiments. Experimental work was also contributed by F.G. (electron microscopy), Y.W. (electron microscopy), J.C. and D.S. (C. elegans experiments), C.Z. (curvature sorting), I.M. (neuronal experiment), K.Y. (retina experiment) and X.W. (circular dichroism spectroscopy).

Corresponding author

Correspondence to Pietro De Camilli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Acute perturbation of plasma membrane cholesterol induces massive endocytic tubular invaginations positive N-BAR proteins.

a. Confocal image of a cell expressing GFP-tagged endophilin 2ΔSH3 after MβCD treatment. b,c. Formation of endophilin 2 foci in different cell lines on MβCD treatment. MEF =mouse embryonic fibroblast. For each cell type, 50 cells expressing endophilin-2–GFP were counted and percentages of the cells that contain endophilin 2 clusters were plotted. Data represent a single experiment. d. Anti-endophilin 2 immunofluorescence staining of a control cell or a cell treated with MβCD for 5 min (+MβCD). e. Cell co-expressing amphiphysin 2-GFP and endophilin-2–Ruby after MβCD treatment. f. Confocal image of an endophilin TKO cell expressing amphiphysin 2-GFP before and after MβCD treatment. g. Confocal images of a WT cell expressing endophilin-2–Ruby (left), after MβCD treatment (middle) and supplemented with cholesterol after MβCD treatment (right). h. Confocal image of a cell expressing endophilin-2–GFP treated with HPβCD (an analogue of MβCD). Scale bar, 10 mμ in a,b,d,f and h; 5 μm in e and g.

Supplementary Figure 2 Characterization of endocytic tubular invaginations induced by perturbation of plasma membrane cholesterol.

a, b. Double fluorescence images showing that endophilin 2 foci are positive for chemical (TopFluor-PS, a and genetically encoded (C2lact-GFP, b PtdSer markers. c,d. Double fluorescence images showing that endophilin 2 foci are negative for the genetically encoded PI(4,5)P2 probe (GFP-PHPLC, c and immunoreactivity recognized by an anti-PI(4,5)P2 antibody, d,e. Double fluorescence images showing that endophilin 2 foci are negative for the genetically encoded PI3P probe GFP-FYVEHrs. f, Scanning electron microscopy micrographs of a mouse fibroblast before (left) and after (right) MβCD treatment. Framed regions, which are shown at a higher magnification at the right of each field, highlight the disappearance of filopodia after treatment. g, Representative example of the change in the footprint of a cell labeled by PM-GFP before (white) and after MβCD treatment (gray). h,i, Representative images (h) and quantification (i) of endophilin 2 foci induced by MβCD in WT, clathrin heavy chain (CHC) knockdown (KD), and dynamin triple KO mouse fibroblasts. n = 37 (WT), 36 (CHC KD), and 38 (dyn TKO). Pooled data from three independent experiments. Error bars represent standard errors of the mean. [ns] not significant; [***] P < 0.001, Student’s t-test. j, Double fluorescence confocal images of a cell expressing dynamin 2-RFP and endophilin-2–GFP after MβCD treatment. k, Double fluorescence confocal images of a cell expressing dynamin 2-RFP and endophilin-2ΔSH3–GFP after MβCD treatment. Scale bar, 3 μm in ae,j and k and 10 βm in f,g and h, All pictures shown in the figure are from mouse fibroblasts.

Supplementary Figure 3 The sphingoid base modifying enzyme, sphingosine kinase 1 (SPHK1), is recruited to the endophilin 2 foci.

a. A genetic interaction map in budding yeast30 revealed a genetic interaction between RVS161 and RVS167 and genes encoding enzymes involved in sphingolipid and ergosterol synthesis (top). Blue and yellow indicate negative and positive interaction, respectively. The interactions of RVS161 and RVS167 with enzymes regulating sphingoid base level are framed by a purple rectangle. The corresponding pathway and orthologous mammalian enzymes (black letters) are shown at the bottom. b, Localization of several sphingolipid metabolic enzymes (all transmembrane proteins with the exception of CerK) in mammalian cells as shown by confocal microscopy analysis of transfected GFP-fusion proteins. SMPD3: neutral sphingomyelinase 2 (plasma membrane); ASAH2: neutral ceramidase 2 (plasma membrane); CerK: ceramide kinase (plasma membrane, but also partially cytosolic); SGPP1: sphingosine-1-phosphate phosphatase 1 (ER); CerS1: ceramide synthase 1 (ER); SGPL1: sphingosine-1-phosphate lyase 1 (ER). c, Sphingolipid metabolic pathway where the enzymes analysed in b is shown in red. d, Double fluorescence images of a cell expressing endophilin-2–GFP and SPHK2-FLAG following MβCD treatment, fixation and subsequent immunostaining with anti-FLAG antibody. e, Confocal image of an endophilin triple KO cell expressing SPHK1-GFP after MβCD treatment. Scale bar, 10 μm in b and e; and 5 μm in d.

Supplementary Figure 4 SPHK1 and SPHK2 knockdown in HeLa cells.

HeLa cells were transfected with control siRNA (ctrl) or siRNA directed against SPHK1 and SPHK2 (DKD). SPHK1 and SPHK2 mRNA levels were measured by real-time qPCR. n = 3 measurements. Error bar: standard error of the mean. Data are from one experiment, but are representative of three independent experiments.

Supplementary Figure 5 In vitro assay of purified SPHK1.

a. Coomassie-stained SDS-PAGE showing purified SPHK1-GFP-FLAG. b, Sphingosine kinase assay. Autoradiography of a TLC plate showing that purified SPHK1 is catalytically active as it phosphorylates sphingosine to generate radiolabeled sphingosine-1-phosphate in vitro. As the two lanes shown in the image were from the same TLC plate but not adjacent to each other, a black splice mark was included to separate the two lanes. The full TLC plate from which the data are extracted is shown in Supplementary Fig. 7c. The presence of SPHK1 on the membrane bilayer does not change the relationship between tubule radius and tension in the membrane tethering assay. n = 6 (with SPHK1) and 9 (without SPHK) pulled tubules. Each tubule represents an independent experiment, and data from independent experiments are averaged. Error bars represent standard error of the mean.

Supplementary Figure 6 Human SPHK1 rescues the synaptic transmission defect observed in SPHK-1 mutant worms.

Time-course of the onset of paralysis of the indicated worm strains on exposure to the acetylcholine esterase inhibitor aldicarb (1 mM). sphk-1; H.s. SPHK1 stands for sphk-1 null mutants expressing full length human SPHK1 cDNA in neurons. n = 3 plates. One transgenic line was assayed and 25 animals were examined from each plate. Average paralysis rate was determined by pooling data from the three assays. Error bars represent standard error of the mean.

Supplementary Figure 7 Original TLC from which the data of Supplementary Fig. 5b were extracted (lanes 2 and 7).

Lane 3–6 are from a purified SPHK1 expressed in bacteria.The low catalytic activity of this preparation most likely reflects protein misfolding. For this reason, SPHK1 was expressed in and purified from mammalian cells, Expi293F cells (lanes 1 and 2). Lane 7 is the control where no protein was added in the reaction.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1545 kb)

Spinning disk confocal movie of HeLa cells expressing endophilin-2–GFP on MβCD treatment.

Spinning disc confocal microscopy of HeLa cells expressing endophilin-2–GFP showing the formation and disappearance of the large endophilin foci during 10 mM MβCD treatment. The interval between frames is 4 s. Playback rate is 12 frames per second. Scale bar, 10 μm. (AVI 2073 kb)

Transmission electron microscopy tomography of a tubular membrane cluster generated by MβCD treatment.

Mouse fibroblasts expressing endophilin-2–GFP were treated with 10 mM MβCD, and processed as described in the Methods section. A plastic section (250 nm) containing a tubular cluster was visualized by electron tomography. (MOV 8991 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Giordano, F., Wu, Y. et al. Coupling between endocytosis and sphingosine kinase 1 recruitment. Nat Cell Biol 16, 652–662 (2014). https://doi.org/10.1038/ncb2987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing