Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B

Abstract

Activation of Toll-like receptors (TLRs) induces the endoplasmic reticulum (ER) unfolded protein response (UPR) to accommodate essential protein translation1,2. However, despite increased levels of phosphorylated eIF2α (p-eIF2α), a TLR–TRIF-dependent pathway assures that the cells avoid CHOP induction, apoptosis and translational suppression of critical proteins3. As p-eIF2α decreases the functional interaction of eIF2 with eIF2B, a guanine nucleotide exchange factor (GEF), we explored the hypothesis that TLR–TRIF signalling activates eIF2B GEF activity to counteract the effects of p-eIF2α. We now show that TLR–TRIF signalling activates eIF2B GEF through PP2A-mediated serine dephosphorylation of the eIF2B ɛ-subunit. PP2A itself is activated by decreased Src-family-kinase-induced tyrosine phosphorylation of its catalytic subunit. Each of these processes is required for TLR–TRIF-mediated CHOP suppression in ER-stressed cells in vitro and in vivo. Thus, in the setting of prolonged, physiologic ER stress, a unique TLR–TRIF-dependent translational control pathway enables cells to carry out essential protein synthesis and avoid CHOP-induced apoptosis while still benefiting from the protective arms of the UPR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LPS increases guanine nucleotide exchange activity of eIF2B.
Figure 2: Evidence that dephosphorylation of eIF2Bɛ is involved in LPS-mediated CHOP suppression in ER-stressed MEFs.
Figure 3: LPS promotes dephosphorylation of eIF2Bɛ through a mechanism involving PP2A, with evidence in vivo.
Figure 4: Evidence that TLR–TRIF-mediated PP2Ac dephosphorylation, CHOP suppression and restoration of global protein translation involve a pathway involving SFK deactivation.
Figure 5: Evidence for and functional significance of the TRIF–Src–PP2Ac–eIF2B pathway in an hd-LPS model.

Similar content being viewed by others

References

  1. Todd, D. J., Lee, A. H. & Glimcher, L. H. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat. Rev. Immunol. 8, 663–674 (2008).

    Article  CAS  Google Scholar 

  2. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  Google Scholar 

  3. Woo, C. W. et al. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat. Cell Biol. 11, 1473–1480 (2009).

    Article  CAS  Google Scholar 

  4. Ron, D. Translational control in the endoplasmic reticulum stress response. J. Clin. Invest. 110, 1383–1388 (2002).

    Article  CAS  Google Scholar 

  5. Tabas, I. & Ron, D. Molecular mechanisms integrating pathways of endoplasmic reticulum stress-induced apoptosis. Nat. Cell Biol. 13, 184–190 (2011).

    Article  CAS  Google Scholar 

  6. Oyadomari, S. & Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death. Differ. 11, 381–389 (2004).

    Article  CAS  Google Scholar 

  7. Krishnamoorthy, T., Pavitt, G. D., Zhang, F., Dever, T. E. & Hinnebusch, A. G. Tight binding of the phosphorylated α subunit of initiation factor 2 (eIF2α) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol. Cell Biol. 21, 5018–5030 (2001).

    Article  CAS  Google Scholar 

  8. Welsh, G. I., Miller, C. M., Loughlin, A. J., Price, N. T. & Proud, C. G. Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Lett. 421, 125–130 (1998).

    Article  CAS  Google Scholar 

  9. Wang, X. & Proud, C. G. A novel mechanism for the control of translation initiation by amino acids, mediated by phosphorylation of eukaryotic initiation factor 2B. Mol. Cell Biol. 28, 1429–1442 (2008).

    Article  CAS  Google Scholar 

  10. Hardt, S. E., Tomita, H., Katus, H. A. & Sadoshima, J. Phosphorylation of eukaryotic translation initiation factor 2Bε by glycogen synthase kinase-3β regulates β-adrenergic cardiac myocyte hypertrophy. Circ. Res. 94, 926–935 (2004).

    Article  CAS  Google Scholar 

  11. Fang, X. et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc. Natl Acad. Sci. USA 97, 11960–11965 (2000).

    Article  CAS  Google Scholar 

  12. Chung, H., Nairn, A. C., Murata, K. & Brautigan, D. L. Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the α 4 subunit which promotes dephosphorylation of elongation factor-2. Biochemistry 38, 10371–10376 (1999).

    Article  CAS  Google Scholar 

  13. Evans, D. R., Myles, T., Hofsteenge, J. & Hemmings, B. A. Functional expression of human PP2Ac in yeast permits the identification of novel C-terminal and dominant-negative mutant forms. J. Biol. Chem. 274, 24038–24046 (1999).

    Article  CAS  Google Scholar 

  14. Santa-Coloma, T. A. Anp32e (Cpd1) and related protein phosphatase 2 inhibitors. Cerebellum 2, 310–320 (2003).

    Article  CAS  Google Scholar 

  15. Nanahoshi, M. et al. α4 protein as a common regulator of type 2A-related serine/threonine protein phosphatases. FEBS Lett. 446, 108–112 (1999).

    Article  CAS  Google Scholar 

  16. Chen, J., Martin, B. L. & Brautigan, D. L. Regulation of protein serine–threonine phosphatase type-2A by tyrosine phosphorylation. Science 257, 1261–1264 (1992).

    Article  CAS  Google Scholar 

  17. Hu, X. et al. Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia. BMC. Neurosci. 10, 74 (2009).

    Article  Google Scholar 

  18. Barisic, S., Schmidt, C., Walczak, H. & Kulms, D. Tyrosine phosphatase inhibition triggers sustained canonical serine-dependent NFκB activation via Src-dependent blockade of PP2A. Biochem. Pharmacol. 80, 439–447 (2010).

    Article  CAS  Google Scholar 

  19. Brown, M. T. & Cooper, J. A. Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121–149 (1996).

    PubMed  Google Scholar 

  20. Liu, X. et al. Regulation of c-Src tyrosine kinase activity by the Src SH2 domain. Oncogene 8, 1119–1126 (1993).

    CAS  PubMed  Google Scholar 

  21. Lu, B. et al. Peptide neurotransmitters activate a cation channel complex of NALCN and UNC-80. Nature 457, 741–744 (2009).

    Article  CAS  Google Scholar 

  22. Encinas, M. et al. c-Src is required for glial cell line-derived neurotrophic factor (GDNF) family ligand-mediated neuronal survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway. J. Neurosci. 21, 1464–1472 (2001).

    Article  CAS  Google Scholar 

  23. Mayhew, D. L., Hornberger, T. A., Lincoln, H. C. & Bamman, M. M. Eukaryotic initiation factor 2Bε induces cap-dependent translation and skeletal muscle hypertrophy. J. Physiol. 589, 3023–3037 (2011).

    Article  CAS  Google Scholar 

  24. Potter, M. W., Shah, S. A., Elbirt, K. K. & Callery, M. P. Endotoxin (LPS) stimulates 4E-BP1/PHAS-I phosphorylation in macrophages. J. Surg. Res. 97, 54–59 (2001).

    Article  CAS  Google Scholar 

  25. Lee, J. Y. et al. The regulation of the expression of inducible nitric oxide synthase by Src-family tyrosine kinases mediated through MyD88-independent signaling pathways of Toll-like receptor 4. Biochem. Pharmacol. 70, 1231–1240 (2005).

    Article  CAS  Google Scholar 

  26. Kim, J. Y. et al. Src-mediated regulation of inflammatory responses by actin polymerization. Biochem. Pharmacol. 79, 431–443 (2010).

    Article  CAS  Google Scholar 

  27. Tu, S., Wu, W. J., Wang, J. & Cerione, R. A. Epidermal growth factor-dependent regulation of Cdc42 is mediated by the Src tyrosine kinase. J. Biol. Chem. 278, 49293–49300 (2003).

    Article  CAS  Google Scholar 

  28. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).

    Article  CAS  Google Scholar 

  29. Curtiss, L. K. & Tobias, P. S. Emerging role of toll-like receptors in atherosclerosis. J. Lipid Res. 50 Suppl, S340–S345 (2008).

    PubMed  Google Scholar 

  30. Lee, A. S. & Hendershot, L. M. ER stress and cancer. Cancer Biol. Ther. 5, 721–722 (2006).

    Article  CAS  Google Scholar 

  31. Check, J. et al. Src kinase participates in LPS-induced activation of NADPH oxidase. Mol. Immunol. 47, 756–762 (2010).

    Article  CAS  Google Scholar 

  32. Healy, S. J., Gorman, A. M., Mousavi-Shafaei, P., Gupta, S. & Samali, A. Targeting the endoplasmic reticulum-stress response as an anticancer strategy. Eur. J. Pharmacol. 625, 234–246 (2009).

    Article  CAS  Google Scholar 

  33. Cook, A. D., Braine, E. L. & Hamilton, J. A. The phenotype of inflammatory macrophages is stimulus dependent: implications for the nature of the inflammatory response. J. Immunol. 171, 4816–4823 (2003).

    Article  CAS  Google Scholar 

  34. Zinszner, H. et al. CHOP is implicated in programmed cell death inresponse to impaired function of the endoplasmic reticulum. Genes Dev. 12, 982–995 (1998).

    Article  CAS  Google Scholar 

  35. Jefferson, L. S., Fabian, J. R. & Kimball, S. R. Glycogen synthase kinase-3 is the predominant insulin-regulated eukaryotic initiation factor 2B kinase in skeletal muscle. Int. J. Biochem. Cell Biol. 31, 191–200 (1999).

    Article  CAS  Google Scholar 

  36. Tuckow, A. P., Vary, T. C., Kimball, S. R. & Jefferson, L. S. Ectopic expression of eIF2Bε in rat skeletal muscle rescues the sepsis-induced reduction in guanine nucleotide exchange activity and protein synthesis. Am. J. Physiol. Endocrinol. Metab. 299, E241–E248 (2010).

    Article  CAS  Google Scholar 

  37. Novoa, I., Zeng, H., Harding, H. P. & Ron, D. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153, 1011–1022 (2001).

    Article  CAS  Google Scholar 

  38. Feng, B. et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol. 5, 781–792 (2003).

    Article  CAS  Google Scholar 

  39. Kimball, S. R., Everson, W. V., Flaim, K. E. & Jefferson, L. S. Initiation of protein synthesis in a cell-free system prepared from rat hepatocytes. Am. J. Physiol. 256, C28–C34 (1989).

    Article  CAS  Google Scholar 

  40. Rowlands, A. G., Montine, K. S., Henshaw, E. C. & Panniers, R. Physiological stresses inhibit guanine-nucleotide-exchange factor in Ehrlich cells. Eur. J. Biochem. 175, 93–99 (1988).

    Article  CAS  Google Scholar 

  41. Matts, R. L. & London, I. M. The regulation of initiation of protein synthesis by phosphorylation of eIF- 2(α) and the role of reversing factor in the recycling of eIF-2. J. Biol. Chem. 259, 6708–6711 (1984).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by postdoctoral fellowship grants from the Canadian Institutes of Health Research and the Heart & Stroke Foundation of Canada (C.W.W.); NIH-NHLBI grants HL75662 and HL57560 (I.T.); and NIH-NIDDK grants DK13499 and DK15658 (S.R.K.). We thank D. Ron (University of Cambridge, UK) for helpful discussions and for providing the CHOP–GFP reporter plasmid; C. Proud (University of Southampton, UK) for recombinant GST–DYRK2; D. Ren (University of Pennsylvania, USA) for advice regarding the use of mutant Src constructs; D. L. Brautigan (University of Virginia School of Medicine, USA) for the construct encoding PP2AcY307F; B. A. Hemmings (Friedrich Miescher Institute, Basel, Switzerland) for the construct encoding PP2AcL199P; and B. Berk (University of Rochester, USA) for an adenoviral vector encoding kinase-inactive Src.

Author information

Authors and Affiliations

Authors

Contributions

C.W.W. carried out the experiments and assisted with planning the experiments, data analysis and writing the manuscript; L.K. assisted with planning the experiments and data analysis; S.R.K. assisted with planning the experiments, data analysis and writing the manuscript; I.T. coordinated the project and assisted with planning the experiments, data analysis and writing the manuscript.

Corresponding author

Correspondence to Ira Tabas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2179 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, C., Kutzler, L., Kimball, S. et al. Toll-like receptor activation suppresses ER stress factor CHOP and translation inhibition through activation of eIF2B. Nat Cell Biol 14, 192–200 (2012). https://doi.org/10.1038/ncb2408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing