Review Article | Published:

Materials discovery at high pressures

Nature Reviews Materials volume 2, Article number: 17005 (2017) | Download Citation

  • A Correction to this article was published on 07 March 2017

Abstract

Pressure is a fundamental thermodynamic variable that can be used to control the properties of materials, because it reduces interatomic distances and profoundly modifies electronic orbitals and bonding patterns. It is thus a versatile tool for the creation of exotic materials not accessible at ambient conditions. Recently developed static and dynamic high-pressure experimental techniques have led to the synthesis of many functional materials with excellent performance: for example, superconductors, superhard materials and high-energy-density materials. Some of these advances have been aided and accelerated by first-principles crystal-structure searching simulations. In this Review, we discuss recent progress in high-pressure materials discovery, placing particular emphasis on the record high-temperature superconductivity in hydrogen sulfide and on nanotwinned cubic boron nitride and diamond, the hardest known materials. Energy materials and exotic chemical materials obtained under high pressures are also discussed. The main drawback of high-pressure materials is their destabilization after pressure release; this problem and its possible solutions are surveyed in the conclusions, which also provide an outlook on the future developments in the field.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Physics of solids under strong compression. Rep. Prog. Phys. 59, 28–90 (1996).

  2. 2.

    High-pressure synthesis, characterization, and tuning of solid state materials. Annu. Rev. Mater. Sci. 28, 631–658 (1998).

  3. 3.

    Effects of high pressure on molecules. Annu. Rev. Phys. Chem. 51, 763–800 (2000).

  4. 4.

    New materials from high-pressure experiments. Nat. Mater. 1, 19–25 (2002).

  5. 5.

    New materials from high pressure experiments: challenges and opportunities. High Press. Res. 23, 7–22 (2003).

  6. 6.

    Chemistry at high pressure. Chem. Soc. Rev. 35, 855–857 (2006).

  7. 7.

    , , & The chemical imagination at work in very tight places. Angew. Chem. Int. Ed. 46, 3620–3642 (2007).

  8. 8.

    Condensed matter chemistry under ‘extreme’ high pressure-high temperature conditions. High Press. Res. 24, 67–86 (2004).

  9. 9.

    Pressing on: the legacy of Percy W. Bridgman. Nat. Mater. 4, 715–718 (2005).

  10. 10.

    Bridgman's second century. High Press. Res. 30, 581–619 (2010).

  11. 11.

    , , & High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys. 75, 863 (2003).

  12. 12.

    & Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 66, 671–692 (1994).

  13. 13.

    Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957).

  14. 14.

    & Assembling the puzzle of superconducting elements: a review. Supercond. Sci. Technol. 18, R1–R8 (2005).

  15. 15.

    et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

  16. 16.

    et al. Ultrahard nanotwinned cubic boron nitride. Nature 493, 385–388 (2013).

  17. 17.

    , , , & Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).

  18. 18.

    , , & Pressure-induced symmetry-lowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity. Phys. Rev. Lett. 113, 205502 (2014).

  19. 19.

    , , , & Novel high pressure structures of polymeric nitrogen. Phys. Rev. Lett. 102, 100–103 (2009).

  20. 20.

    et al. Transparent dense sodium. Nature 458, 182–185 (2009).

  21. 21.

    et al. Cold melting and solid structures of dense lithium. Nat. Phys. 7, 211–214 (2011).

  22. 22.

    et al. Crystal structures of dense lithium: a metal–semiconductor–metal transition. Phys. Rev. Lett. 106, 095502 (2011).

  23. 23.

    et al. Recent advances in new hard high-pressure nitrides. Adv. Mater. 18, 2933–2948 (2006).

  24. 24.

    et al. High-pressure chemistry of nitride-based materials. Chem. Soc. Rev. 35, 987–1014 (2006).

  25. 25.

    New perspectives on potential hydrogen storage materials using high pressure. Phys. Chem. Chem. Phys. 15, 14524–14547 (2013).

  26. 26.

    et al. Heating of Li in hydrogen: possible synthesis of LiHx. High Press. Res. 35, 16–21 (2015).

  27. 27.

    , , , & New iron hydrides under high pressure. Phys. Rev. Lett. 113, 265504 (2014).

  28. 28.

    et al. Rhodium dihydride (RhH2) with high volumetric hydrogen density. Proc. Natl Acad. Sci. USA 108, 18618–18621 (2011).

  29. 29.

    et al. High-pressure synthesis and characterization of iridium trihydride. Phys. Rev. Lett. 111, 215503 (2013).

  30. 30.

    et al. Unexpected stable stoichiometries of sodium chlorides. Science 342, 1502–1505 (2013).

  31. 31.

    , , , & Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

  32. 32.

    , , , & Novel cooperative interactions and structural ordering in H2S-H2. Phys. Rev. Lett. 107, 255503 (2011).

  33. 33.

    et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

  34. 34.

    et al. Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys. 12, 835–838 (2016).

  35. 35.

    et al. Dissociation products and structures of solid H2S at strong compression. Phys. Rev. B 93, 020103(R) (2016).

  36. 36.

    , , , & What superconducts in sulfur hydrides under pressure and why. Phys. Rev. B 91, 060511(R) (2015).

  37. 37.

    , , , & The metallization and superconductivity of dense hydrogen sulfide. J. Chem. Phys. 140, 174712 (2014).

  38. 38.

    & Hydrogen storage in molecular compounds. Proc. Natl Acad. Sci. USA 101, 708–710 (2004).

  39. 39.

    et al. Stable Lithium Argon compounds under high pressure. Sci. Rep. 5, 16675 (2015).

  40. 40.

    et al. Anionic chemistry of noble gases: formation of Mg–NG (NG = Xe, Kr, Ar) compounds under pressure. J. Am. Chem. Soc. 137, 14122–14128 (2015).

  41. 41.

    , , , & Reactions of xenon with iron and nickel are predicted in the Earth's inner core. Nat. Chem. 6, 644–648 (2014).

  42. 42.

    , , , & Stable xenon nitride at high pressures. Phys. Rev. B 92, 094104 (2015).

  43. 43.

    & High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).

  44. 44.

    et al. Pressure-induced high-spin to low-spin transition in FeS evidenced by X-ray emission spectroscopy. Phys. Rev. Lett. 82, 3284–3287 (1999).

  45. 45.

    et al. Suppression of magnetic order by pressure in BaFe2As2. J. Phys. Soc. Japan 77, 105004 (2008).

  46. 46.

    , , , & Pressure induced superconductivity in pristine 1T-TiSe2. Phys. Rev. Lett. 103, 236401 (2009).

  47. 47.

    & Perspective: crystal structure prediction at high pressures. J. Chem. Phys. 140, 40901 (2014).

  48. 48.

    Diamond anvil cell and high-pressure physical investigations. Rev. Mod. Phys. 55, 65–108 (1983).

  49. 49.

    , , & The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 84, 1607 (2012).

  50. 50.

    , , & Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012).

  51. 51.

    et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015).

  52. 52.

    et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341 (2016).

  53. 53.

    & Recent advances of high-pressure generation in a multianvil apparatus using sintered diamond anvils. Geosci. Front. 2, 101–106 (2011).

  54. 54.

    et al. Achieving high-density states through shock-wave loading of precompressed samples. Proc. Natl Acad. Sci. USA 104, 9172–9177 (2007).

  55. 55.

    , & Optimization by simulated annealing. Science 220, 671–680 (1983).

  56. 56.

    Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120, 9911 (2004).

  57. 57.

    & Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

  58. 58.

    & Ab initio random structure searching. J. Phys. Condens. Matter 23, 053201 (2011).

  59. 59.

    & Global space-group optimization problem: finding the stablest crystal structure without constraints. Phys. Rev. B 75, 104113 (2007).

  60. 60.

    & XtalOpt: an open-source evolutionary algorithm for crystal structure prediction. Comput. Phys. Commun. 182, 372–387 (2011).

  61. 61.

    & Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).

  62. 62.

    et al. New superconducting and semiconducting Fe–B compounds predicted with an ab initio evolutionary search. Phys. Rev. Lett. 105, 217003 (2010).

  63. 63.

    , , & CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183, 2063–2070 (2012).

  64. 64.

    , , & Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

  65. 65.

    Superconductivity in the metallic elements at high pressures. Phys. C Supercond. Appl. 514, 59–76 (2015).

  66. 66.

    , , & Evidence for bulk superconductivity in pure bismuth single crystals at ambient pressure. Science 355, 52–55 (2017).

  67. 67.

    et al. Enhancement of superconductivity by pressure-driven competition in electronic order. Nature 466, 950–953 (2010).

  68. 68.

    et al. High-pressure effects in fluorinated HgBa2Ca2Cu3O8+δ Europhys. Lett. 72, 458 (2005).

  69. 69.

    & High pressure studies on Fe-pnictide superconductors. Phys. C 469, 385–395 (2009).

  70. 70.

    et al. Superconductivity up to 164 K in HgBa2Cam 1CumO2m + 2 + δ (m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B Condens. Matter 50, 4260–4263 (1994).

  71. 71.

    et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature 483, 67–69 (2012).

  72. 72.

    et al. Pressure-induced superconductivity in quasi-2D CeRhIn5. Phys. Rev. Lett. 84, 4986–4989 (2000).

  73. 73.

    et al. Superconductivity in diamond. Nature 428, 542–545 (2004).

  74. 74.

    , , & Superconductivity at 10–17 K in compressed sulphur. Nature 390, 382–384 (1997).

  75. 75.

    et al. Competition of charge-density waves and superconductivity in sulfur. Phys. Rev. Lett. 99, 155505 (2007).

  76. 76.

    Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

  77. 77.

    , & Evidence for a new phase of dense hydrogen above 325 gigapascals. Nature 529, 63–67 (2016).

  78. 78.

    & Observation of the Wigner–Huntington transition to metallic hydrogen. Science http:\\dx.doi.org\10.1126/science.aal1579 (2017).

  79. 79.

    Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

  80. 80.

    et al. Structures and potential superconductivity in SiH4 at high pressure: en route to ‘metallic hydrogen’. Phys. Rev. Lett. 96, 017006 (2006).

  81. 81.

    et al. Superconducting behavior in compressed solid SiH4 with a layered structure. Phys. Rev. Lett. 101, 077002 (2008).

  82. 82.

    et al. High-pressure structures of disilane and their superconducting properties. Phys. Rev. Lett. 108, 117004 (2012).

  83. 83.

    et al. Superconducting high pressure phase of germane. Phys. Rev. Lett. 101, 107002 (2008).

  84. 84.

    et al. Superconductivity at 100 K in dense SiH4(H2)2 predicted by first principles. Proc. Natl Acad. Sci. USA 107, 15708–15711 (2010).

  85. 85.

    , , , & Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl Acad. Sci. USA 109, 6463–6466 (2012).

  86. 86.

    et al. Pressure-stabilized superconductive yttrium hydrides. Sci. Rep. 5, 9948 (2015).

  87. 87.

    , , , & Superconductivity in hydrogen dominant materials: silane. Science 319, 1506–1509 (2008).

  88. 88.

    , , , & Formation of transition metal hydrides at high pressures. Solid State Commun. 149, 1583–1586 (2009).

  89. 89.

    , , , & Ab initio simulation of phase transitions and dissociation of H2S at high pressure. Phys. Rev. Lett. 85, 1254–1257 (2000).

  90. 90.

    et al. Molecular dissociation and two low-temperature high-pressure phases of H2S. Phys. Rev. B 69, 214102 (2004).

  91. 91.

    , , & Possible ‘Magnéli’ phases and self-alloying in the superconducting sulfur hydride. Phys. Rev. Lett. 117, 075503 (2016).

  92. 92.

    et al. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure. Sci. Rep. 6, 23160 (2016).

  93. 93.

    et al. High-pressure hydrogen sulfide from first principles: a strongly anharmonic phonon-mediated superconductor. Phys. Rev. Lett. 114, 157004 (2015).

  94. 94.

    et al. Quantum hydrogen-bond symmetrization in the superconducting hydrogen sulfide system. Nature 532, 81–84 (2016).

  95. 95.

    , & Superconductivity above 100 K in PH3 at high pressures. Preprint at https://arxiv.org/abs/1508.06224 (2015).

  96. 96.

    et al. High-pressure phase stability and superconductivity of pnictogen hydrides and chemical trends for compressed hydrides. Chem. Mater. 28, 1746–1755 (2016).

  97. 97.

    et al. Superconductivity in metastable phases of phosphorus-hydride compounds under high pressure. Phys. Rev. B 93, 20508 (2016).

  98. 98.

    , , , & Crystal structure and superconductivity of PH3 at high pressures. J. Phys. Chem. C 120, 3458–3461 (2016).

  99. 99.

    et al. Decomposition products of phosphine under pressure: PH2 stable and superconducting? J. Am. Chem. Soc. 138, 1884–1892 (2016).

  100. 100.

    & Superconducting high-pressure phases composed of hydrogen and iodine. J. Phys. Chem. Lett. 6, 4067–4072 (2015).

  101. 101.

    et al. Tellurium hydrides at high pressures: high-temperature superconductors. Phys. Rev. Lett. 116, 057002 (2016).

  102. 102.

    et al. Superconductivity of novel tin hydrides (SnnHm) under pressure. Sci. Rep. 6, 22873 (2016).

  103. 103.

    , & Recent advances in superhard materials. Annu. Rev. Mater. Res. 46, 70115–31649 (2016).

  104. 104.

    et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

  105. 105.

    et al. Superhard monoclinic polymorph of carbon. Phys. Rev. Lett. 102, 175506 (2009).

  106. 106.

    , , & Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2, 520 (2012).

  107. 107.

    et al. Long-range ordered carbon clusters: a crystalline material with amorphous building blocks. Science 337, 825–828 (2012).

  108. 108.

    et al. Pressure-induced transformation and superhard phase in fullerenes: the effect of solvent intercalation. Appl. Phys. Lett. 103, 71913 (2013).

  109. 109.

    et al. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011).

  110. 110.

    , & Raman spectroscopy of glassy carbon up to 60 GPa. Appl. Phys. Lett. 102, 121909 (2013).

  111. 111.

    et al. Superhard and superconducting structures of BC5. J. Appl. Phys. 108, 23507 (2010).

  112. 112.

    , , , & Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. Phys. Rev. Lett. 102, 15506 (2009).

  113. 113.

    et al. Phase transition in BCx system under high-pressure and high-temperature: synthesis of cubic dense BC3 nanostructured phase. J. Appl. Phys. 111, 114905 (2012).

  114. 114.

    , , , & Raman spectroscopy of the BC3 phase obtained under high pressure and high temperature. J. Raman Spectrosc. 38, 1362–1367 (2007).

  115. 115.

    & High-Tc superconductivity in superhard diamondlike BC5. Phys. Rev. Lett. 101, 016401 (2008).

  116. 116.

    et al. Superhard BC3 in cubic diamond structure. Phys. Rev. Lett. 114, 15502 (2015).

  117. 117.

    , , , & Synthesis of superhard cubic BC2N. Appl. Phys. Lett. 78, 1385–1387 (2001).

  118. 118.

    et al. Superhard B–C–N materials synthesized in nanostructured bulks. J. Mater. Res. 17, 3139–3145 (2002).

  119. 119.

    et al. Icosahedral packing of B12 icosahedra in boron suboxide (B6O). Nature 391, 376–378 (1998).

  120. 120.

    et al. Synthesis of cubic silicon nitride. Nature 400, 340–342 (1999).

  121. 121.

    , , & Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys. Rev. Lett. 102, 55503 (2009).

  122. 122.

    , & Colossal shear-strength enhancement of low-density cubic BC2N bynanoindentation. Phys. Rev. Lett. 98, 135505 (2007).

  123. 123.

    et al. First-principles structural design of superhard materials. J. Chem. Phys. 138, 114101 (2013).

  124. 124.

    , , , & Materials: ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

  125. 125.

    , & Creation of nanostructures by extreme conditions: high-pressure synthesis of ultrahard nanocrystalline cubic boron nitride. Adv. Mater. 24, 1540–1544 (2012).

  126. 126.

    et al. Superhard nanocomposite of dense polymorphs of boron nitride: noncarbon material has reached diamond hardness. Appl. Phys. Lett. 90, 2013–2016 (2007).

  127. 127.

    , & Hardness of nanocrystalline diamonds. Phys. Rev. B 73, 140102 (2006).

  128. 128.

    , & Materials science. Designing superhard materials. Science 308, 1268–1269 (2005).

  129. 129.

    , , , & Anomalous stress response of ultrahard WBn compounds. Phys. Rev. Lett. 115, 185502 (2015).

  130. 130.

    , , , & Global structural optimization of tungsten borides. Phys. Rev. Lett. 110, 136403 (2013).

  131. 131.

    , , , & Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4. Appl. Phys. Lett. 93, 101905 (2008).

  132. 132.

    , & Transition metal borides: superhard versus ultra-incompressible. Adv. Mater. 20, 3620–3626 (2008).

  133. 133.

    et al. Synthesis and characterization of a binary noble metal nitride. Nat. Mater. 3, 294–297 (2004).

  134. 134.

    et al. Synthesis and characterization of the nitrides of platinum and iridium. Science 311, 1275–1278 (2006).

  135. 135.

    et al. Synthesis of novel transition metal nitrides IrN2 and OsN2. Phys. Rev. Lett. 96, 155501 (2006).

  136. 136.

    et al. Hard superconducting nitrides. Proc. Natl Acad. Sci. USA 102, 3198–3201 (2005).

  137. 137.

    et al. Hardness of covalent crystals. Phys. Rev. Lett. 91, 15502 (2003).

  138. 138.

    , & Revisiting the Phillips ionicity of conductors and the quantitative determination of the hardness of carbides and nitrides of transition metals using the LDA+U technique. Solid State Commun. 150, 1818–1821 (2010).

  139. 139.

    , , & Electronegativity identification of novel superhard materials. Phys. Rev. Lett. 100, 235504 (2008).

  140. 140.

    & Hardness of covalent and ionic crystals: first-principle calculations. Phys. Rev. Lett. 96, 085501 (2006).

  141. 141.

    & Evolutionary search for superhard materials: methodology and applications to forms of carbon and TiO2. Phys. Rev. B 84, 92103 (2011).

  142. 142.

    , , & N5+: a novel homoleptic polynitrogen ion as a high energy density material. Angew. Chem. Int. Ed. 38, 2004–2009 (1999).

  143. 143.

    & Pressure dissociation of solid nitrogen under 1 Mbar. Phys. Rev. Lett. 54, 1929–1932 (1985).

  144. 144.

    , & Photochemical reductive cis-elimination incis-diazidobis(triphenylphosphane)platinum(ii) evidence of the formation of bis(triphenylphosphane)platinum(0) and hexaazabenzene. Angew. Chem. Int. Ed. Engl. 19, 717–718 (1980).

  145. 145.

    & & Polymeric nitrogen. Phys. Rev. B Condens. Matter 46, 14419–14435 (1992).

  146. 146.

    , , & Prediction of new phases of nitrogen at high pressure from first-principles simulations. Phys. Rev. Lett. 93, 125501 (2004).

  147. 147.

    , , , & Low-pressure metastable phase of single-bonded polymeric nitrogen from a helical structure motif and first-principles calculations. Phys. Rev. B 75, 140101 (2007).

  148. 148.

    et al. Cagelike diamondoid nitrogen at high pressures. Phys. Rev. Lett. 109, 175502 (2012).

  149. 149.

    & High-pressure phases of nitrogen. Phys. Rev. Lett. 102, 125702 (2009).

  150. 150.

    , , , & Systematic method to new phases of polymeric nitrogen under high pressure. Phys. Rev. Lett. 97, 155503 (2006).

  151. 151.

    , , & Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411, 170–174 (2001).

  152. 152.

    , , , & Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys. Rev. Lett. 85, 1262–1265 (2000).

  153. 153.

    et al. High P-T transformations of nitrogen to 170 GPa. J. Chem. Phys. 126, 184505 (2007).

  154. 154.

    et al. Polymerization of nitrogen in sodium azide. J. Chem. Phys. 120, 10618–10623 (2004).

  155. 155.

    et al. Phase stability of lithium azide at pressures up to 60 GPa. J. Phys. Condens. Matter 21, 195404 (2009).

  156. 156.

    et al. Series of phase transitions in cesium azide under high pressure studied by in situ X-ray diffraction. Phys. Rev. B 84, 064127 (2011).

  157. 157.

    , , & A new high-pressure polymeric nitrogen phase in potassium azide. RSC Adv. 5, 11825–11830 (2015).

  158. 158.

    , & Evolving structural diversity and metallicity in compressed lithium azide. J. Phys. Chem. C 117, 20838–20846 (2013).

  159. 159.

    , , , & Novel high-pressure phase with pseudo-benzene ‘N6’ molecule of LiN3. Europhys. Lett. 101, 26004 (2013).

  160. 160.

    , , & Crystalline LiN5 predicted from first-principles as a possible high-energy material. J. Phys. Chem. Lett. 6, 2363 (2015).

  161. 161.

    Raman and IR study of high-pressure atomic phase of nitrogen. Phys. Lett. A 334, 317–325 (2005).

  162. 162.

    et al. Nitrogen backbone oligomers. Sci. Rep. 5, 13239 (2015).

  163. 163.

    et al. Pressure-induced chemistry in a nitrogen–hydrogen host–guest structure. Nat. Commun. 5, 5739 (2014).

  164. 164.

    et al. Backbone NxH compounds at high pressures. J. Chem. Phys. 142, 214308 (2015).

  165. 165.

    , , & High energy density mixed polymeric phase from carbon monoxide and nitrogen. Phys. Rev. Lett. 111, 235501 (2013).

  166. 166.

    , , , & N2H: a novel polymeric hydronitrogen as a high energy density material. J. Mater. Chem. A 3, 4188–4194 (2015).

  167. 167.

    et al. Diverse chemistry of stable hydronitrogens, and implications for planetary and materials sciences. Sci. Rep. 6, 25947 (2016).

  168. 168.

    et al. Novel lithium-nitrogen compounds at ambient and high pressures. Sci. Rep. 5, 14204 (2015).

  169. 169.

    , , & Novel H2–H2O clathrates at high pressures. Phys. Rev. Lett. 71, 3150–3153 (1993).

  170. 170.

    et al. Hydrogen clusters in clathrate hydrate. Science 297, 2247–2249 (2002).

  171. 171.

    , & Phase behavior of H2+H2O at high pressures and low temperatures. J. Phys. Chem. C 115, 4898–4903 (2011).

  172. 172.

    et al. Triggering dynamics of the high-pressure benzene amorphization. Nat. Mater. 6, 39–43 (2007).

  173. 173.

    , , , & A little bit of lithium does a lot for hydrogen. Proc. Natl Acad. Sci. USA 106, 17640–17643 (2009).

  174. 174.

    , , , & Identification of new pillared-layered carbon nitride materials at high pressure. Sci. Rep. 3, 2122 (2013).

  175. 175.

    et al. High-pressure synthesis of crystalline carbon nitride imide, C2N2(NH). Angew. Chem. Int. Ed. 46, 1476–1480 (2007).

  176. 176.

    , , , & Carbon nitride frameworks and dense crystalline polymorphs. Phys. Rev. B 94, 94104 (2016).

  177. 177.

    et al. A stable compound of helium and sodium at high pressure. Nat. Chem. http:\\dx.doi.org\10.1038/nchem.2716 (2017).

  178. 178.

    Caesium in high oxidation states and as a p-block element. Nat. Chem. 5, 846–852 (2013).

  179. 179.

    et al. Mercury under pressure acts as a transition metal: calculated from first principles. Angew. Chem. Int. Ed. 127, 9412–9415 (2015).

  180. 180.

    , , , & Gold as a 6p-element in dense lithium aurides. J. Am. Chem. Soc. 138, 4046–4052 (2016).

  181. 181.

    & Pressure-stabilized lithium caesides with caesium anions beyond the −1 state. Nat. Commun. 5, 4861 (2014).

  182. 182.

    et al. Novel broken symmetry phase from N2O at high pressures and high temperatures. Phys. Rev. Lett. 87, 135504 (2001).

  183. 183.

    et al. Experimental and theoretical evidence for an ionic crystal of ammonia at high pressure. Phys. Rev. B 89, 174103 (2014).

  184. 184.

    et al. Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound. Nat. Commun. 5, 3460 (2014).

  185. 185.

    & Highly compressed ammonia forms an ionic crystal. Nat. Mater. 7, 775–779 (2008).

  186. 186.

    et al. High pressure partially ionic phase of water ice. Nat. Commun. 2, 563 (2011).

  187. 187.

    et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

  188. 188.

    Calculated structural phase transitions in the alkaline earth metals. Phys. Rev. Lett. 49, 1768–1772 (1982).

  189. 189.

    & Pairing in dense lithium. Nature 400, 141–144 (1999).

  190. 190.

    et al. Phase stability of highly compressed cesium. Phys. Rev. B 61, 14399–14404 (2000).

  191. 191.

    , , & Predicted novel high-pressure phases of lithium. Phys. Rev. Lett. 106, 15503 (2011).

  192. 192.

    , , & Crystal structures and exotic behavior of magnesium under pressure. J. Phys. Chem. C 114, 21745–21749 (2010).

  193. 193.

    & Aluminium at terapascal pressures. Nat. Mater. 9, 624–627 (2010).

  194. 194.

    , & Novel stable compounds in the Mg–O system under high pressure. Phys. Chem. Chem. Phys. 15, 7696–7700 (2013).

  195. 195.

    , & (Barely) solid Li(NH3)4: the electronics of an expanded metal. J. Am. Chem. Soc. 133, 3535–3547 (2011).

  196. 196.

    et al. Prediction of host–guest Na–Fe intermetallics at high pressures. Inorg. Chem. 55, 7026–7032 (2016).

  197. 197.

    Growth of cubic boron nitride by chemical vapor deposition and high-pressure high-temperature synthesis. Diam. Relat. Mater. 2, 197–200 (1993).

  198. 198.

    et al. A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 137, 10297–10303 (2015).

  199. 199.

    et al. Synthesis of polar ordered oxynitride perovskite. Preprint at (2016).

  200. 200.

    et al. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5. Proc. Natl Acad. Sci. USA 113, 2904–2909 (2016).

  201. 201.

    & Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186–189 (2009).

  202. 202.

    , , , & Rubidium-IV: a high pressure phase with complex crystal structure. Phys. Rev. Lett. 83, 4085–4088 (1999).

  203. 203.

    & On the constitution of sodium at higher densities. Phys. Rev. Lett. 86, 2830–2833 (2001).

  204. 204.

    Effect of high pressure on crystal electronegativities of elements. J. Phys. Chem. Solids 58, 527–532 (1997).

  205. 205.

    , , , & Superconductivity in compressed lithium at 20 K. Nature 419, 597–599 (2002).

  206. 206.

    et al. Superconductivity in the chalcogens up to multimegabar pressures. Phys. Rev. B 65, 064504 (2002).

  207. 207.

    & Predicted superconductive properties of lithium under pressure. Phys. Rev. Lett. 86, 1861–1864 (2001).

  208. 208.

    , , , & Superconducting state of Ca-VII below a critical temperature of 29 K at a pressure of 216 GPa. Phys. Rev. B 83, 220512 (2011).

  209. 209.

    et al. Superconductivity at 55 K in iron-based f-doped layered quaternary compound Sm[O1 xFx] FeAs. Chinese Phys. Lett. 25, 2215–2216 (2008).

  210. 210.

    , & Comparison of the pressure dependences of T c in the trivalent d-electron superconductors Sc, Y, La, and Lu up to megabar pressures. Phys. Rev. B 78, 64519 (2008).

  211. 211.

    , , & High-pressure compounds in methane-hydrogen mixtures. Science 271, 1400–1402 (1996).

  212. 212.

    , & Transition element-like chemistry for potassium under pressure. Science 273, 95–97 (1996).

  213. 213.

    , & Proton disorder and superionicity in hot dense ammonia ice. Phys. Rev. Lett. 108, 165702 (2012).

  214. 214.

    et al. Experimental evidence of superionic conduction in H2O ice. J. Chem. Phys. 137, 194505 (2012).

  215. 215.

    et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).

Download references

Acknowledgements

The authors acknowledge funding support from the National Key Research and Development Program of China (under Grant No. 2016YFB0201200), National Natural Science Foundation of China (under Grants No. 11404131, 11674121 and 11534003), 2012 Changjiang Scholar of Ministry of Education, Recruitment Program of Global Youth Experts in China, and Science Challenge Project (under Grant No. JCKY2016212A501).

Author information

Affiliations

  1. Key Laboratory of Automobile Materials of MOE and Department of Materials Science and Engineering, Jilin University.

    • Lijun Zhang
    •  & Jian Lv
  2. State Key Laboratory of Superhard Materials, Department of Physics, Jilin University.

    • Lijun Zhang
    • , Yanchao Wang
    •  & Yanming Ma
  3. International Center of Future Science, Jilin University, Changchun 130012, China.

    • Yanming Ma

Authors

  1. Search for Lijun Zhang in:

  2. Search for Yanchao Wang in:

  3. Search for Jian Lv in:

  4. Search for Yanming Ma in:

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Yanming Ma.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/natrevmats.2017.5