Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders

Abstract

Prenatal stress is a risk factor for several psychiatric disorders in which inhibitory neuron pathology is implicated. A growing body of research demonstrates that inhibitory circuitry in the brain is directly and persistently affected by prenatal stress. This review synthesizes research that explores how this early developmental risk factor impacts inhibitory neurons and how these findings intersect with research on risk factors and inhibitory neuron pathophysiology in schizophrenia, anxiety, autism and Tourette syndrome. The specific impact of prenatal stress on inhibitory neurons, particularly developmental mechanisms, may elucidate further the pathophysiology of these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McEwen S . Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann NY Acad Sci 2004; 1032: 1–7.

    Article  PubMed  Google Scholar 

  2. Sousa N, Almeida OF . Disconnection and reconnection: the morphological basis of (mal)adaptation to stress. Trends Neurosci 2012; 35: 742–751.

    Article  CAS  PubMed  Google Scholar 

  3. Nugent NR, Tyrka AR, Carpenter LL, Price LH . Gene–environment interactions: early life stress and risk for depressive and anxiety disorders. Psychopharmacology (Berl) 2011; 214: 175–196.

    Article  CAS  Google Scholar 

  4. Stevens HE, Smith KM, Rash BG, Vaccarino FM . Neural stem cell regulation, fibroblast growth factors, and the developmental origins of neuropsychiatric disorders. Front Neurosci 2010; 4: 1–14.

    Google Scholar 

  5. Monk C, Spicer J, Champagne FA . Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev Psychopathol 2012; 24: 1361–1376.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Markham JA, Koenig JI . Prenatal stress: role in psychotic and depressive diseases. Psychopharmacology (Berl) 2011; 214: 89–106.

    Article  CAS  Google Scholar 

  7. Weinstock M . The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 2008; 32: 1073–1086.

    Article  CAS  PubMed  Google Scholar 

  8. Harris A, Seckl J . Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011; 59: 279–289.

    Article  CAS  PubMed  Google Scholar 

  9. Letinic K, Zoncu R, Rakic P . Origin of GABAergic neurons in the human neocortex. Nature 2002; 417: 645–649.

    Article  CAS  PubMed  Google Scholar 

  10. Wonders CP, Anderson SA . The origin and specification of cortical interneurons. Nat Rev Neurosci 2006; 7: 687–696.

    Article  CAS  PubMed  Google Scholar 

  11. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K et al. The K+/Cl− co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 1999; 397: 251–255.

    Article  CAS  PubMed  Google Scholar 

  12. Hensch TK . Critical period plasticity in local cortical circuits. Nat Rev Neurosci 2005; 6: 877–888.

    Article  CAS  PubMed  Google Scholar 

  13. Fishell G, Rudy B . Mechanisms of inhibition within the telencephalon: ‘where the wild things are’. Annu Rev Neurosci 2011; 34: 535–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corbin JG, Butt SJ . Developmental mechanisms for the generation of telencephalic interneurons. Dev Neurobiol 2011; 71: 710–732.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson SA, Eisenstat DD, Shi L, Rubenstein JL . Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 1997; 278: 474–476.

    Article  CAS  PubMed  Google Scholar 

  16. Colasante G, Collombat P, Raimondi V, Bonanomi D, Ferrai C, Maira M et al. Arx is a direct target of Dlx2 and thereby contributes to the tangential migration of GABAergic interneurons. J Neurosci 2008; 28: 10674–10686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T . Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003; 467: 60–79.

    Article  CAS  PubMed  Google Scholar 

  18. Butt SJ, Sousa VH, Fuccillo MV, Hjerling-Leffler J, Miyoshi G, Kimura S et al. The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes. Neuron 2008; 59: 722–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flames N, Pla R, Gelman DM, Rubenstein JL, Puelles L, Marin O . Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neurosci 2007; 27: 9682–9695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hammond V, So E, Gunnersen J, Valcanis H, Kalloniatis M, Tan SS . Layer positioning of late-born cortical interneurons is dependent on Reelin but not p35 signaling. J Neurosci 2006; 26: 1646–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Flames N, Long JE, Garratt AN, Fischer TM, Gassmann M, Birchmeier C et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 2004; 44: 251–261.

    Article  CAS  PubMed  Google Scholar 

  22. Stumm RK, Zhou C, Ara T, Lazarini F, Dubois-Dalcq M, Nagasawa T et al. CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 2003; 23: 5123–5130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marin O, Yaron A, Bagri A, Tessier-Lavigne M, Rubenstein JL . Sorting of striatal and cortical interneurons regulated by semaphorin–neuropilin interactions. Science 2001; 293: 872–875.

    Article  CAS  PubMed  Google Scholar 

  24. Lemaire V, Lamarque S, Le Moal M, Piazza PV, Abrous DN . Postnatal stimulation of the pups counteracts prenatal stress-induced deficits in hippocampal neurogenesis. Biol Psychiatry 2006; 59: 786–792.

    Article  PubMed  Google Scholar 

  25. Ulupinar E, Yucel F, Ortug G . The effects of prenatal stress on the Purkinje cell neurogenesis. Neurotoxicol Teratol 2006; 28: 86–94.

    Article  CAS  PubMed  Google Scholar 

  26. Stevens HE, Su T, Yanagawa Y, Vaccarino FM . Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex. Psychoneuroendocrinology 2013; 38: 509–521.

    Article  CAS  PubMed  Google Scholar 

  27. Oskvig DB, Elkahloun AG, Johnson KR, Phillips TM, Herkenham M . Maternal immune activation by LPS selectively alters specific gene expression profiles of interneuron migration and oxidative stress in the fetus without triggering a fetal immune response. Brain Behav Immun 2012; 26: 623–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schneider ML, Moore CF, Kraemer GW, Roberts AD, DeJesus OT . The impact of prenatal stress, fetal alcohol exposure, or both on development: perspectives from a primate model. Psychoneuroendocrinology 2002; 27: 285–298.

    Article  CAS  PubMed  Google Scholar 

  29. Fukumoto K, Morita T, Mayanagi T, Tanokashira D, Yoshida T, Sakai A et al. Detrimental effects of glucocorticoids on neuronal migration during brain development. Mol Psychiatry 2009; 14: 1119–1131.

    Article  CAS  PubMed  Google Scholar 

  30. Uchida T, Furukawa T, Iwata S, Yanagawa Y, Fukuda A . Selective loss of parvalbumin-positive GABAergic interneurons in the cerebral cortex of maternally stressed Gad1-heterozygous mouse offspring. Transl Psychiatry 2014; 4: e371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Inan M, Welagen J, Anderson SA . Spatial and temporal bias in the mitotic origins of somatostatin- and parvalbumin-expressing interneuron subgroups and the chandelier subtype in the medial ganglionic eminence. Cereb Cortex 2012; 22: 820–827.

    Article  PubMed  Google Scholar 

  32. Matrisciano F, Tueting P, Dalal I, Kadriu B, Grayson DR, Davis JM et al. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice. Neuropharmacology 2013; 68: 184–194.

    Article  CAS  PubMed  Google Scholar 

  33. Sasaki A, de Vega WC, McGowan PO . Biological embedding in mental health: an epigenomic perspective. Biochem Cell Biol 2013; 91: 14–21.

    Article  CAS  PubMed  Google Scholar 

  34. Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG . The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 1999; 19: 7881–7888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barker JL, Behar T, Li YX, Liu QY, Ma W, Maric D et al. GABAergic cells and signals in CNS development. Perspect Dev Neurobiol 1998; 5: 305–322.

    CAS  PubMed  Google Scholar 

  36. Bortone D, Polleux F . KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 2009; 62: 53–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Uchida T, Oki Y, Yanagawa Y, Fukuda A . A heterozygous deletion in the glutamate decarboxylase 67 gene enhances maternal and fetal stress vulnerability. Neurosci Res 2011; 69: 276–282.

    Article  CAS  PubMed  Google Scholar 

  38. Zuloaga DG, Carbone DL, Hiroi R, Chong DL, Handa RJ . Dexamethasone induces apoptosis in the developing rat amygdala in an age-, region-, and sex-specific manner. Neuroscience 2011; 199: 535–547.

    Article  CAS  PubMed  Google Scholar 

  39. Welberg LA, Seckl JR . Prenatal stress, glucocorticoids and the programming of the brain. J Neuroendocrinol 2001; 13: 113–128.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi LK, Kalin NH, Barksdale CM, Vanden Burgt JA, Brownfield MS . Stressor controllability during pregnancy influences pituitary–adrenal hormone concentrations and analgesic responsiveness in offspring. Physiol Behav 1988; 42: 323–329.

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi LK, Kalin NH . Early developmental and temporal characteristics of stress-induced secretion of pituitary-adrenal hormones in prenatally stressed rat pups. Brain Res 1991; 558: 75–78.

    Article  CAS  PubMed  Google Scholar 

  42. Henry C, Kabbaj M, Simon H, Le Moal M, Maccari S . Prenatal stress increases the hypothalamo-pituitary-adrenal axis response in young and adult rats. J Neuroendocrinol 1994; 6: 341–345.

    Article  CAS  PubMed  Google Scholar 

  43. Weinstock M, Matlina E, Maor GI, Rosen H, McEwen BS . Prenatal stress selectively alters the reactivity of the hypothalamic-pituitary adrenal system in the female rat. Brain Res 1992; 595: 195–200.

    Article  CAS  PubMed  Google Scholar 

  44. Barbazanges A, Piazza PV, Le Moal M, Maccari S . Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci 1996; 16: 3943–3949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC et al. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 2003; 24: 151–180.

    Article  CAS  PubMed  Google Scholar 

  46. Viltart O, Mairesse J, Darnaudery M, Louvart H, Vanbesien-Mailliot C, Catalani A et al. Prenatal stress alters Fos protein expression in hippocampus and locus coeruleus stress-related brain structures. Psychoneuroendocrinology 2006; 31: 769–780.

    Article  CAS  PubMed  Google Scholar 

  47. Fride E, Dan Y, Gavish M, Weinstock M . Prenatal stress impairs maternal behavior in a conflict situation and reduces hippocampal benzodiazepine receptors. Life Sci 1985; 36: 2103–2109.

    Article  CAS  PubMed  Google Scholar 

  48. Stone DJ, Walsh JP, Sebro R, Stevens R, Pantazopolous H, Benes FM . Effects of pre- and postnatal corticosterone exposure on the rat hippocampal GABA system. Hippocampus 2001; 11: 492–507.

    Article  CAS  PubMed  Google Scholar 

  49. Barros VG, Rodriguez P, Martijena ID, Perez A, Molina VA, Antonelli MC . Prenatal stress and early adoption effects on benzodiazepine receptors and anxiogenic behavior in the adult rat brain. Synapse 2006; 60: 609–618.

    Article  CAS  PubMed  Google Scholar 

  50. Laloux C, Mairesse J, Van Camp G, Giovine A, Branchi I, Bouret S et al. Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress. Psychoneuroendocrinology 2012; 37: 1646–1658.

    Article  CAS  PubMed  Google Scholar 

  51. Zuloaga DG, Carbone DL, Handa RJ . Prenatal dexamethasone selectively decreases calretinin expression in the adult female lateral amygdala. Neurosci Lett 2012; 521: 109–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reznikov A, Nosenko N, Tarasenko L, Sinitsyn P, Polyakova L, Mishunina T . Neuroendocrine disorders in adult rats treated prenatally with hydrocortisone acetate. Exp Toxicol Pathol 2008; 60: 489–497.

    Article  CAS  PubMed  Google Scholar 

  53. Matrisciano F, Tueting P, Maccari S, Nicoletti F, Guidotti A . Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology 2012; 37: 929–938.

    Article  CAS  PubMed  Google Scholar 

  54. Grigoryan G, Segal M . Prenatal stress affects network properties of rat hippocampal neurons. Biol Psychiatry 2013; 73: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  55. Schulz KM, Pearson JN, Neeley EW, Berger R, Leonard S, Adams CE et al. Maternal stress during pregnancy causes sex-specific alterations in offspring memory performance, social interactions, indices of anxiety, and body mass. Physiol Behav 2011; 104: 340–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Patin V, Lordi B, Vincent A, Caston J . Effects of prenatal stress on anxiety and social interactions in adult rats. Brain Res Dev Brain Res 2005; 160: 265–274.

    Article  CAS  PubMed  Google Scholar 

  57. Miyagawa K, Tsuji M, Fujimori K, Saito Y, Takeda H . Prenatal stress induces anxiety-like behavior together with the disruption of central serotonin neurons in mice. Neurosci Res 2011; 70: 111–117.

    Article  CAS  PubMed  Google Scholar 

  58. Weinstock M . Effects of maternal stress on development and behaviour in rat offspring. Stress 2001; 4: 157–167.

    Article  CAS  PubMed  Google Scholar 

  59. Jones KL, Smith RM, Edwards KS, Givens B, Tilley MR, Beversdorf DQ . Combined effect of maternal serotonin transporter genotype and prenatal stress in modulating offspring social interaction in mice. Int J Dev Neurosci 2010; 28: 529–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marrocco J, Mairesse J, Ngomba RT, Silletti V, Van Camp G, Bouwalerh H et al. Anxiety-like behavior of prenatally stressed rats is associated with a selective reduction of glutamate release in the ventral hippocampus. J Neurosci 2012; 32: 17143–17154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Edwards HE, Dortok D, Tam J, Won D, Burnham WM . Prenatal stress alters seizure thresholds and the development of kindled seizures in infant and adult rats. Horm Behav 2002; 42: 437–447.

    Article  PubMed  Google Scholar 

  62. Charil A, Laplante DP, Vaillancourt C, King S . Prenatal stress and brain development. Brain Res Rev 2010; 65: 56–79.

    Article  PubMed  Google Scholar 

  63. O'Connor TG, Ben-Shlomo Y, Heron J, Golding J, Adams D, Glover V . Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biol Psychiatry 2005; 58: 211–217.

    Article  CAS  PubMed  Google Scholar 

  64. Hatfield T, Wing DA, Buss C, Head K, Muftuler LT, Davis EP . Magnetic resonance imaging demonstrates long-term changes in brain structure in children born preterm and exposed to chorioamnionitis. Am J Obstet Gynecol 2011; 205: 384.e1–384.e8.

    Article  Google Scholar 

  65. Maki P, Riekki T, Miettunen J, Isohanni M, Jones PB, Murray GK et al. Schizophrenia in the offspring of antenatally depressed mothers in the northern Finland 1966 birth cohort: relationship to family history of psychosis. Am J Psychiatry 2010; 167: 70–77.

    Article  PubMed  Google Scholar 

  66. Khashan AS, Abel KM, McNamee R, Pedersen MG, Webb RT, Baker PN et al. Higher risk of offspring schizophrenia following antenatal maternal exposure to severe adverse life events. Arch Gen Psychiatry 2008; 65: 146–152.

    Article  PubMed  Google Scholar 

  67. Myhrman A, Rantakallio P, Isohanni M, Jones P, Partanen U . Unwantedness of a pregnancy and schizophrenia in the child. Br J Psychiatry 1996; 169: 637–640.

    Article  CAS  PubMed  Google Scholar 

  68. van Os J, Selten JP . Prenatal exposure to maternal stress and subsequent schizophrenia. The May 1940 invasion of The Netherlands. Br J Psychiatry 1998; 172: 324–326.

    Article  CAS  PubMed  Google Scholar 

  69. Kinney DK, Hyman W, Greetham C, Tramer S . Increased relative risk for schizophrenia and prenatal exposure to a severe tornado. Schizophr Res 1999; 36: 45–46.

    Google Scholar 

  70. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney WE Jr et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.

    Article  CAS  PubMed  Google Scholar 

  71. Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000; 57: 1061–1069.

    Article  CAS  PubMed  Google Scholar 

  72. Curley AA, Arion D, Volk DW, Asafu-Adjei JK, Sampson AR, Fish KN et al. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features. Am J Psychiatry 2011; 168: 921–929.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gonzalez-Burgos G, Hashimoto T, Lewis DA . Alterations of cortical GABA neurons and network oscillations in schizophrenia. Curr Psychiatry Rep 2010; 12: 335–344.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hashimoto T, Bazmi HH, Mirnics K, Wu Q, Sampson AR, Lewis DA . Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia. Am J Psychiatry 2008; 165: 479–489.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mellios N, Huang HS, Baker SP, Galdzicka M, Ginns E, Akbarian S . Molecular determinants of dysregulated GABAergic gene expression in the prefrontal cortex of subjects with schizophrenia. Biol Psychiatry 2009; 65: 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  77. Fung SJ, Webster MJ, Sivagnanasundaram S, Duncan C, Elashoff M, Weickert CS . Expression of interneuron markers in the dorsolateral prefrontal cortex of the developing human and in schizophrenia. Am J Psychiatry 2010; 167: 1479–1488.

    Article  PubMed  Google Scholar 

  78. Woo TU, Miller JL, Lewis DA . Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons. Am J Psychiatry 1997; 154: 1013–1015.

    Article  CAS  PubMed  Google Scholar 

  79. Beasley CL, Zhang ZJ, Patten I, Reynolds GP . Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry 2002; 52: 708–715.

    Article  CAS  PubMed  Google Scholar 

  80. Tooney PA, Chahl LA . Neurons expressing calcium-binding proteins in the prefrontal cortex in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 273–278.

    Article  CAS  PubMed  Google Scholar 

  81. Hashimoto T, Arion D, Unger T, Maldonado-Aviles JG, Morris HM, Volk DW et al. Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 2008; 13: 147–161.

    Article  CAS  PubMed  Google Scholar 

  82. Beneyto M, Abbott A, Hashimoto T, Lewis DA . Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia. Cereb Cortex 2011; 21: 999–1011.

    Article  PubMed  Google Scholar 

  83. Glausier JR, Lewis DA . Selective pyramidal cell reduction of GABA(A) receptor alpha1 subunit messenger RNA expression in schizophrenia. Neuropsychopharmacology 2011; 36: 2103–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fazzari P, Paternain AV, Valiente M, Pla R, Lujan R, Lloyd K et al. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature 2010; 464: 1376–1380.

    Article  CAS  PubMed  Google Scholar 

  85. Vullhorst D, Neddens J, Karavanova I, Tricoire L, Petralia RS, McBain CJ et al. Selective expression of ErbB4 in interneurons, but not pyramidal cells, of the rodent hippocampus. J Neurosci 2009; 29: 12255–12264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yau HJ, Wang HF, Lai C, Liu FC . Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb Cortex 2003; 13: 252–264.

    Article  PubMed  Google Scholar 

  87. Mei L, Xiong WC . Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 2008; 9: 437–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Harrison PJ, Law AJ . Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry 2006; 60: 132–140.

    Article  CAS  PubMed  Google Scholar 

  89. Silberberg G, Darvasi A, Pinkas-Kramarski R, Navon R . The involvement of ErbB4 with schizophrenia: association and expression studies. Am J Med Genet B 2006; 141B: 142–148.

    Article  CAS  Google Scholar 

  90. Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 2003; 72 83–87.

    Article  CAS  PubMed  Google Scholar 

  91. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  92. Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S et al. Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 2007; 104: 14501–14506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Steinecke A, Gampe C, Valkova C, Kaether C, Bolz J . Disrupted-in-Schizophrenia 1 (DISC1) is necessary for the correct migration of cortical interneurons. J Neurosci 2012; 32: 738–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Meechan DW, Tucker ES, Maynard TM, LaMantia AS . Cxcr4 regulation of interneuron migration is disrupted in 22q11.2 deletion syndrome. Proc Natl Acad Sci USA 2012; 109: 18601–18606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ronald A, Pennell CE, Whitehouse AJ . Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Front Psychol 2010; 1: 223.

    PubMed  Google Scholar 

  96. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE et al. Timing of prenatal stressors and autism. J Autism Dev Disord 2005; 35: 471–478.

    Article  CAS  PubMed  Google Scholar 

  97. Ward AJ . A comparison and analysis of the presence of family problems during pregnancy of mothers of ‘autistic’ children and mothers of normal children. Child Psychiatry Hum Dev 1990; 20: 279–288.

    Article  CAS  PubMed  Google Scholar 

  98. Kinney DK, Miller AM, Crowley DJ, Huang E, Gerber E . Autism prevalence following prenatal exposure to hurricanes and tropical storms in Louisiana. J Autism Dev Disord 2008; 38: 481–488.

    Article  PubMed  Google Scholar 

  99. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR . Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 2002; 52: 805–810.

    Article  CAS  PubMed  Google Scholar 

  100. Yip J, Soghomonian JJ, Blatt GJ . Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 2007; 113: 559–568.

    Article  CAS  PubMed  Google Scholar 

  101. Collins AL, Ma D, Whitehead PL, Martin ER, Wright HH, Abramson RK et al. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 2006; 7: 167–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fatemi SH, Reutiman TJ, Folsom TD, Thuras PD . GABA(A) receptor downregulation in brains of subjects with autism. J Autism Dev Disord 2009; 39: 223–230.

    Article  PubMed  Google Scholar 

  103. Fatemi SH, Reutiman TJ, Folsom TD, Rooney RJ, Patel DH, Thuras PD . mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 2010; 40: 743–750.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Oblak AL, Gibbs TT, Blatt GJ . Reduced GABAA receptors and benzodiazepine binding sites in the posterior cingulate cortex and fusiform gyrus in autism. Brain Res 2011; 1380: 218–228.

    Article  CAS  PubMed  Google Scholar 

  105. Oblak AL, Gibbs TT, Blatt GJ . Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem 2010; 114: 1414–1423.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Fatemi SH, Folsom TD, Reutiman TJ, Thuras PD . Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum 2009; 8: 64–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H et al. Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord 2011; 41: 447–454.

    Article  PubMed  Google Scholar 

  108. Mori T, Mori K, Fujii E, Toda Y, Miyazaki M, Harada M et al. Evaluation of the GABAergic nervous system in autistic brain: (123)I-iomazenil SPECT study. Brain Dev 2012; 34: 648–654.

    Article  PubMed  Google Scholar 

  109. Mendez MA, Horder J, Myers J, Coghlan S, Stokes P, Erritzoe D et al. The brain GABA-benzodiazepine receptor alpha-5 subtype in autism spectrum disorder: a pilot [(11)C]Ro15-4513 positron emission tomography study. Neuropharmacology 2013; 68: 195–201.

    Article  CAS  PubMed  Google Scholar 

  110. Gogolla N, Leblanc JJ, Quast KB, Sudhof TC, Fagiolini M, Hensch TK . Common circuit defect of excitatory–inhibitory balance in mouse models of autism. J Neurodev Disord 2009; 1: 172–181.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Penagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011; 147: 235–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T et al. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest 2007; 117: 931–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Martins GJ, Shahrokh M, Powell EM . Genetic disruption of Met signaling impairs GABAergic striatal development and cognition. Neuroscience 2011; 176: 199–209.

    Article  CAS  PubMed  Google Scholar 

  114. Selby L, Zhang C, Sun QQ . Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett 2007; 412: 227–232.

    Article  CAS  PubMed  Google Scholar 

  115. El Idrissi A, Ding XH, Scalia J, Trenkner E, Brown WT, Dobkin C . Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci Lett 2005; 377: 141–146.

    Article  CAS  PubMed  Google Scholar 

  116. D'Hulst C, De Geest N, Reeve SP, Van Dam D, De Deyn PP, Hassan BA et al. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 2006; 1121: 238–245.

    Article  CAS  PubMed  Google Scholar 

  117. Gantois I, Vandesompele J, Speleman F, Reyniers E, D'Hooge R, Severijnen LA et al. Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 2006; 21: 346–357.

    Article  CAS  PubMed  Google Scholar 

  118. Adusei DC, Pacey LK, Chen D, Hampson DR . Early developmental alterations in GABAergic protein expression in fragile X knockout mice. Neuropharmacology 2010; 59: 167–171.

    Article  CAS  PubMed  Google Scholar 

  119. Curia G, Papouin T, Seguela P, Avoli M . Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome. Cereb Cortex 2009; 19: 1515–1520.

    Article  PubMed  Google Scholar 

  120. Olmos-Serrano JL, Paluszkiewicz SM, Martin BS, Kaufmann WE, Corbin JG, Huntsman MM . Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J Neurosci 2010; 30: 9929–9938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dani VS, Chang Q, Maffei A, Turrigiano GG, Jaenisch R, Nelson SB . Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc Natl Acad Sci USA 2005; 102: 12560–12565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Medrihan L, Tantalaki E, Aramuni G, Sargsyan V, Dudanova I, Missler M et al. Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome. J Neurophysiol 2008; 99: 112–121.

    Article  CAS  PubMed  Google Scholar 

  123. Zhang L, He J, Jugloff DG, Eubanks JH . The MeCP2-null mouse hippocampus displays altered basal inhibitory rhythms and is prone to hyperexcitability. Hippocampus 2008; 18: 294–309.

    Article  CAS  PubMed  Google Scholar 

  124. Beesdo K, Knappe S, Pine DS . Anxiety and anxiety disorders in children and adolescents: developmental issues and implications for DSM-V. Psychiatr Clin N Am 2009; 32: 483–524.

    Article  Google Scholar 

  125. Bergman K, Sarkar P, O'Connor TG, Modi N, Glover V . Maternal stress during pregnancy predicts cognitive ability and fearfulness in infancy. J Am Acad Child Adolesc Psychiatry 2007; 46: 1454–1463.

    Article  PubMed  Google Scholar 

  126. Van den Bergh BR, Marcoen A . High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Dev 2004; 75: 1085–1097.

    Article  PubMed  Google Scholar 

  127. O'Connor TG, Heron J, Golding J, Glover V, Team AS . Maternal antenatal anxiety and behavioural/emotional problems in children: a test of a programming hypothesis. J Child Psychol Psychiatry 2003; 44: 1025–1036.

    Article  PubMed  Google Scholar 

  128. de Bruijn AT, van Bakel HJ, van Baar AL . Sex differences in the relation between prenatal maternal emotional complaints and child outcome. Early Hum Dev 2009; 85: 319–324.

    Article  PubMed  Google Scholar 

  129. Rice F, Harold GT, Boivin J, van den Bree M, Hay DF, Thapar A . The links between prenatal stress and offspring development and psychopathology: disentangling environmental and inherited influences. Psychol Med 2010; 40: 335–345.

    Article  CAS  PubMed  Google Scholar 

  130. Nikolaus S, Antke C, Beu M, Muller HW . Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders—results from in vivo imaging studies. Rev Neurosci 2010; 21: 119–139.

    Article  CAS  PubMed  Google Scholar 

  131. Bremner JD, Innis RB, Southwick SM, Staib L, Zoghbi S, Charney DS . Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. Am J Psychiatry 2000; 157: 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  132. Hasler G, Nugent AC, Carlson PJ, Carson RE, Geraci M, Drevets WC . Altered cerebral gamma-aminobutyric acid type A-benzodiazepine receptor binding in panic disorder determined by [11C]flumazenil positron emission tomography. Arch Gen Psychiatry 2008; 65: 1166–1175.

    Article  PubMed  Google Scholar 

  133. Smoller JW, Gardner-Schuster E, Covino J . The genetic basis of panic and phobic anxiety disorders. Am J Med Genet C Semin Med Genet 2008; 148C: 118–126.

    Article  PubMed  Google Scholar 

  134. Crowe RR, Wang Z, Noyes R Jr, Albrecht BE, Darlison MG, Bailey ME et al. Candidate gene study of eight GABAA receptor subunits in panic disorder. Am J Psychiatry 1997; 154: 1096–1100.

    Article  CAS  PubMed  Google Scholar 

  135. Leckman JF, Dolnansky ES, Hardin MT, Clubb M, Walkup JT, Stevenson J et al. Perinatal factors in the expression of Tourette's syndrome: an exploratory study. J Am Acad Child Adolesc Psychiatry 1990; 29: 220–226.

    Article  CAS  PubMed  Google Scholar 

  136. Kalanithi PS, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB et al. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci USA 2005; 102: 13307–13312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF et al. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 2010; 518: 277–291.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lerner A, Bagic A, Simmons JM, Mari Z, Bonne O, Xu B et al. Widespread abnormality of the gamma-aminobutyric acid-ergic system in Tourette syndrome. Brain 2012; 135 (Part 6): 1926–1936.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V . Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci 2007; 27: 3078–3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao Y, Flandin P, Long JE, Cuesta MD, Westphal H, Rubenstein JL . Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants. J Comp Neurol 2008; 510: 79–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Paschou P, Stylianopoulou E, Karagiannidis I, Rizzo R, Tarnok Z, Wolanczyk T et al. Evaluation of the LIM homeobox genes LHX6 and LHX8 as candidates for Tourette syndrome. Genes Brain Behav 2012; 11: 444–451.

    Article  CAS  PubMed  Google Scholar 

  142. Geffen Y, Nudelman A, Gil-Ad I, Rephaeli A, Huang M, Savitsky K et al. BL-1020: a novel antipsychotic drug with GABAergic activity and low catalepsy, is efficacious in a rat model of schizophrenia. Eur Neuropsychopharmacol 2009; 19: 1–13.

    Article  CAS  PubMed  Google Scholar 

  143. Geffen Y, Keefe R, Rabinowitz J, Anand R, Davidson M . Bl-1020, a new gamma-aminobutyric acid-enhanced antipsychotic: results of 6-week, randomized, double-blind, controlled, efficacy and safety study. J Clin Psychiatry 2012; 73: e1168–e1174.

    Article  CAS  PubMed  Google Scholar 

  144. Anand R, Geffen Y, Vasile D, Dan I . An open-label tolerability study of BL-1020 antipsychotic: a novel gamma aminobutyric acid ester of perphenazine. Clin Neuropharmacol 2010; 33: 297–302.

    Article  CAS  PubMed  Google Scholar 

  145. Lemonnier E, Degrez C, Phelep M, Tyzio R, Josse F, Grandgeorge M et al. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl Psychiatry 2012; 2: e202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Henderson C, Wijetunge L, Kinoshita MN, Shumway M, Hammond RS, Postma FR et al. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABA(B) receptors with arbaclofen. Sci Transl Med 2012; 4: 152ra128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Berry-Kravis EM, Hessl D, Rathmell B, Zarevics P, Cherubini M, Walton-Bowen K et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci Transl Med 2012; 4: 152ra127.

    Article  CAS  PubMed  Google Scholar 

  148. Goetz CG . Clonidine and clonazepam in Tourette syndrome. Adv Neurol 1992; 58: 245–251.

    CAS  PubMed  Google Scholar 

  149. Singer HS, Wendlandt J, Krieger M, Giuliano J . Baclofen treatment in Tourette syndrome: a double-blind, placebo-controlled, crossover trial. Neurology 2001; 56: 599–604.

    Article  CAS  PubMed  Google Scholar 

  150. Awaad Y, Michon AM, Minarik S . Use of levetiracetam to treat tics in children and adolescents with Tourette syndrome. Mov Disord 2005; 20: 714–718.

    Article  PubMed  Google Scholar 

  151. Fernandez-Jaen A, Fernandez-Mayoralas DM, Munoz-Jareno N, Calleja-Perez B . An open-label, prospective study of levetiracetam in children and adolescents with Tourette syndrome. Eur J Paediatr Neurol 2009; 13: 541–545.

    Article  PubMed  Google Scholar 

  152. Hedderick EF, Morris CM, Singer HS . Double-blind, crossover study of clonidine and levetiracetam in Tourette syndrome. Pediatr Neurol 2009; 40: 420–425.

    Article  PubMed  Google Scholar 

  153. Smith-Hicks CL, Bridges DD, Paynter NP, Singer HS . A double blind randomized placebo control trial of levetiracetam in Tourette syndrome. Mov Disord 2007; 22: 1764–1770.

    Article  PubMed  Google Scholar 

  154. Bustamante C, Henriquez R, Medina F, Reinoso C, Vargas R, Pascual R . Maternal exercise during pregnancy ameliorates the postnatal neuronal impairments induced by prenatal restraint stress in mice. Int J Dev Neurosci 2013; 31: 267–273.

    Article  PubMed  Google Scholar 

  155. Sahu SS, Madhyastha S, Rao GM . Neuroprotective effect of resveratrol against prenatal stress induced cognitive impairment and possible involvement of Na(+), K(+)-ATPase activity. Pharmacol Biochem Behav 2013; 103: 520–525.

    Article  CAS  PubMed  Google Scholar 

  156. Marques AH, O'Connor TG, Roth C, Susser E, Bjorke-Monsen AL . The influence of maternal pr enatal and early childhood nutrition and maternal prenatal stress on offspring immune system development and neurodevelopmental disorders. Front Neurosci 2013; 7: 120.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Abigail Sawyer and Stephanie Lussier for technical assistance and members of the Stevens lab for helpful discussion. This work was supported by National Institutes Health Grants K08 MH086812 (HES), Brain and Behavior Research Foundation NARSAD Young Investigator Award from the Mortimer D Sackler Psychobiology Program (HES) and an American Psychiatric Institute for Research and Education/Wyeth Pharmaceuticals Fellowship (HES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H E Stevens.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fine, R., Zhang, J. & Stevens, H. Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders. Mol Psychiatry 19, 641–651 (2014). https://doi.org/10.1038/mp.2014.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.35

This article is cited by

Search

Quick links