Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early-life prefrontal cortex inhibition and early-life stress lead to long-lasting behavioral, transcriptional, and physiological impairments

Abstract

Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DREADDs expression and response to CNO in early life.
Fig. 2: Maternal separation leads to cognitive deficits.
Fig. 3: Early-life PFC inhibition leads to cognitive deficits.
Fig. 4: Early-life PFC excitation blocks cognitive deficits induced by maternal separation.
Fig. 5: Transcriptome-based cell classification and differential comparison by age and rearing in the mouse PFC.
Fig. 6: Maternal separation affected pathways related to development, glutamatergic/GABAergic and serotonergic function, in interneurons.
Fig. 7: PFC responses to GABAergic and serotonergic modulation.
Fig. 8: PFC responses to GABAergic and serotonergic modulation.

Similar content being viewed by others

Data availability

snRNA-seq data have been deposited in the NCBI Gene Expression Omnibus (GEO) database and are publicly accessible through GEO accession number GSE254342.

References

  1. Green JG, McLaughlin KA, Berglund PA, Gruber MJ, Sampson NA, Zaslavsky AM, et al. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch Gen Psychiatry. 2010;67:113–23.

    Article  PubMed  PubMed Central  Google Scholar 

  2. McLaughlin KA, Green JG, Gruber MJ, Sampson NA, Zaslavsky AM, Kessler RC. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication II: associations with persistence of DSM-IV disorders. Arch Gen Psychiatry. 2010;67:124–32.

    Article  PubMed  PubMed Central  Google Scholar 

  3. U.S. Department of Health and Human Services. Child maltreatment 2009. Washington DC: US Government Printing Office; 2010.

  4. Gould F, Clarke J, Heim C, Harvey PD, Majer M, Nemeroff CB. The effects of child abuse and neglect on cognitive functioning in adulthood. J Psychiatr Res. 2012;46:500–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marshall DF, Passarotti AM, Ryan KA, Kamali M, Saunders EF, Pester B, et al. Deficient inhibitory control as an outcome of childhood trauma. Psychiatry Res. 2016;235:7–12.

    Article  PubMed  Google Scholar 

  6. Reincke SA, Hanganu-Opatz IL. Early-life stress impairs recognition memory and perturbs the functional maturation of prefrontal-hippocampal-perirhinal networks. Sci Rep. 2017;7:42042.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaudhury S, Sharma V, Kumar V, Nag TC, Wadhwa S. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev. 2016;38:355–63.

    Article  PubMed  Google Scholar 

  8. Bechara A, Damasio H, Tranel D, Anderson SW. Dissociation Of working memory from decision making within the human prefrontal cortex. J Neurosci. 1998;18:428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schoenbaum G, Nugent S, Saddoris MP, Gallagher M. Teaching old rats new tricks: age-related impairments in olfactory reversal learning. Neurobiol Aging. 2002;23:555–64.

    Article  PubMed  Google Scholar 

  10. Tottenham N, Hare TA, Casey BJ. Behavioral assessment of emotion discrimination, emotion regulation, and cognitive control in childhood, adolescence, and adulthood. Front Psychol. 2011;2:39.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Parnaudeau S, O’Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron. 2013;77:1151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Funahashi S. Working memory in the prefrontal cortex. Brain Sci. 2017;7:49.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. Mapping cortical change across the human life span. Nat Neurosci. 2003;6:309–15.

    Article  CAS  PubMed  Google Scholar 

  14. Courtiol E, Wilson DA, Shah R, Sullivan RM, Teixeira CM. Maternal regulation of pups’ cortical activity: role of serotonergic signaling. eNeuro. 2018;5:ENEURO.0093-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sarro EC, Wilson DA, Sullivan RM. Maternal regulation of infant brain state. Curr Biol. 2014;24:1664–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Short AK, Baram TZ. Early-life adversity and neurological disease: age-old questions and novel answers. Nat Rev Neurol. 2019;15:657–69.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Opendak M, Gould E, Sullivan R. Early life adversity during the infant sensitive period for attachment: programming of behavioral neurobiology of threat processing and social behavior. Dev Cogn Neurosci. 2017;25:145–59.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Doherty TS, Chajes JR, Reich L, Duffy HBD, Roth TL. Preventing epigenetic traces of caregiver maltreatment: a role for HDAC inhibition. Int J Dev Neurosci. 2019;78:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Steenwyk G, Roszkowski M, Manuella F, Franklin TB, Mansuy IM. Transgenerational inheritance of behavioral and metabolic effects of paternal exposure to traumatic stress in early postnatal life: evidence in the 4th generation. Environ Epigenet. 2018;4:dvy023.

    PubMed  PubMed Central  Google Scholar 

  20. Bolton JL, Short AK, Othy S, Kooiker CL, Shao M, Gunn BG, et al. Early stress-induced impaired microglial pruning of excitatory synapses on immature CRH-expressing neurons provokes aberrant adult stress responses. Cell Rep. 2022;38:110600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Carlyle BC, Duque A, Kitchen RR, Bordner KA, Coman D, Doolittle E, et al. Maternal separation with early weaning: a rodent model providing novel insights into neglect associated developmental deficits. Dev Psychopathol. 2012;24:1401–16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron. 2006;49:603–15.

    Article  CAS  PubMed  Google Scholar 

  23. Tsuda S, Kee MZ, Cunha C, Kim J, Yan P, Loew LM, et al. Probing the function of neuronal populations: combining micromirror-based optogenetic photostimulation with voltage-sensitive dye imaging. Neurosci Res. 2013;75:76–81.

    Article  PubMed  Google Scholar 

  24. Johnston GA. Advantages of an antagonist: bicuculline and other GABA antagonists. Br J Pharmacol. 2013;169:328–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang X, Xing G, Yang C, Verma A, Zhang L, Li H. Stress impairs 5-HT2A receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology. 2009;34:410–23.

    Article  CAS  PubMed  Google Scholar 

  26. Benekareddy M, Goodfellow NM, Lambe EK, Vaidya VA. Enhanced function of prefrontal serotonin 5-HT(2) receptors in a rat model of psychiatric vulnerability. J Neurosci. 2010;30:12138–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sargin D, Chottekalapanda RU, Perit KE, Yao V, Chu D, Sparks DW, et al. Mapping the physiological and molecular markers of stress and SSRI antidepressant treatment in S100a10 corticostriatal neurons. Mol Psychiatry. 2020;25:1112–29.

    Article  PubMed  Google Scholar 

  28. Sciolino NR, Plummer NW, Chen Y-W, Alexander GM, Robertson SD, Dudek SM, et al. Recombinase-dependent mouse lines for chemogenetic activation of genetically defined cell types. Cell Rep. 2016;15:2563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baslow MH, Cain CK, Sears R, Wilson DA, Bachman A, Gerum S, et al. Stimulation-induced transient changes in neuronal activity, blood flow and N-acetylaspartate content in rat prefrontal cortex: a chemogenetic fMRS-BOLD study. NMR Biomed. 2016;29:1678–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allen Institute for Brain Science. Allen Mouse Brain Atlas [dataset]. 2004. Available from mouse.brain-map.org. Allen Institute for Brain Science.

  31. Gaublomme JT, Li B, McCabe C, Knecht A, Yang Y, Drokhlyansky E, et al. Nuclei multiplexing with barcoded antibodies for single-nucleus genomics. Nat Commun. 2019;10:2907.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Melsted P, Booeshaghi AS, Liu L, Gao F, Lu L, Min KHJ, et al. Modular, efficient and constant-memory single-cell RNA-seq preprocessing. Nat Biotechnol. 2021;39:813–8.

    Article  CAS  PubMed  Google Scholar 

  34. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM 3rd, et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018;19:224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–902 e1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kramer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30:523–30.

    Article  PubMed  Google Scholar 

  37. Jendryka M, Palchaudhuri M, Ursu D, van der Veen B, Liss B, Katzel D, et al. Pharmacokinetic and pharmacodynamic actions of clozapine-N-oxide, clozapine, and compound 21 in DREADD-based chemogenetics in mice. Sci Rep. 2019;9:4522.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron. 2009;63:27–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sargin D, Jeoung HS, Goodfellow NM, Lambe EK. Serotonin regulation of the prefrontal cortex: cognitive relevance and the impact of developmental perturbation. ACS Chem Neurosci. 2019;10:3078–93.

    Article  CAS  PubMed  Google Scholar 

  40. Rivera C, Voipio J, Payne JA, Ruusuvuori E, Lahtinen H, Lamsa K, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature. 1999;397:251–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  41. McEwen BS, Morrison JH. The brain on stress: vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 2013;79:16–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suri D, Teixeira CM, Cagliostro MKC, Mahadevia D, Ansorge MS. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology. 2014;40:88–112.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    Article  CAS  PubMed  Google Scholar 

  44. Tottenham N. Risk and developmental heterogeneity in previously institutionalized children. J Adolesc Health. 2012;51:S29–33.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zeanah CH, Egger HL, Smyke AT, Nelson CA, Fox NA, Marshall PJ, et al. Institutional rearing and psychiatric disorders in Romanian preschool children. Am J Psychiatry. 2009;166:777–85.

    Article  PubMed  Google Scholar 

  46. Carrion VG, Weems CF, Watson C, Eliez S, Menon V, Reiss AL. Converging evidence for abnormalities of the prefrontal cortex and evaluation of midsagittal structures in pediatric posttraumatic stress disorder: an MRI study. Psychiatry Res. 2009;172:226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Richert KA, Carrion VG, Karchemskiy A, Reiss AL. Regional differences of the prefrontal cortex in pediatric PTSD: an MRI study. Depress Anxiety. 2006;23:17–25.

    Article  PubMed  Google Scholar 

  48. Carrion VG, Weems CF, Richert K, Hoffman BC, Reiss AL. Decreased prefrontal cortical volume associated with increased bedtime cortisol in traumatized youth. Biol Psychiatry. 2010;68:491–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tomoda A, Suzuki H, Rabi K, Sheu YS, Polcari A, Teicher MH. Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment. Neuroimage. 2009;47:T66–71.

    Article  PubMed  Google Scholar 

  50. Carrey NJ, Butter HJ, Persinger MA, Bialik RJ. Physiological and cognitive correlates of child abuse. J Am Acad Child Adolesc Psychiatry. 1995;34:1067–75.

    Article  CAS  PubMed  Google Scholar 

  51. Prasad MR, Kramer LA, Ewing-Cobbs L. Cognitive and neuroimaging findings in physically abused preschoolers. Arch Dis Child. 2005;90:82–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nolin P, Ethier L. Using neuropsychological profiles to classify neglected children with or without physical abuse. Child Abuse Negl. 2007;31:631–43.

    Article  PubMed  Google Scholar 

  53. Majer M, Nater UM, Lin JM, Capuron L, Reeves WC. Association of childhood trauma with cognitive function in healthy adults: a pilot study. BMC Neurol. 2010;10:61.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pollak SD, Nelson CA, Schlaak MF, Roeber BJ, Wewerka SS, Wiik KL, et al. Neurodevelopmental effects of early deprivation in postinstitutionalized children. Child Dev. 2010;81:224–36.

    Article  PubMed  PubMed Central  Google Scholar 

  55. DE Bellis MD, Hooper SR, Spratt EG, Woolley DP. Neuropsychological findings in childhood neglect and their relationships to pediatric PTSD. J Int Neuropsychol Soc. 2009;15:868–78.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kendall-Tackett KA, Eckenrode J. The effects of neglect on academic achievement and disciplinary problems: a developmental perspective. Child Abuse Negl. 1996;20:161–9.

    Article  CAS  PubMed  Google Scholar 

  57. Loman MM, Wiik KL, Frenn KA, Pollak SD, Gunnar MR. Postinstitutionalized children’s development: growth, cognitive, and language outcomes. J Dev Behav Pediatr. 2009;30:426–34.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mezzacappa E, Kindlon D, Earls F. Child abuse and performance task assessments of executive functions in boys. J Child Psychol Psychiatry. 2001;42:1041–8.

    Article  CAS  PubMed  Google Scholar 

  59. DePrince AP, Weinzierl KM, Combs MD. Executive function performance and trauma exposure in a community sample of children. Child Abuse Negl. 2009;33:353–61.

    Article  PubMed  Google Scholar 

  60. Sonuga-Barke EJ, Rubia K. Inattentive/overactive children with histories of profound institutional deprivation compared with standard ADHD cases: a brief report. Child Care Health Dev. 2008;34:596–602.

    Article  CAS  PubMed  Google Scholar 

  61. Beers SR, De Bellis MD. Neuropsychological function in children with maltreatment-related posttraumatic stress disorder. Am J Psychiatry. 2002;159:483–6.

    Article  PubMed  Google Scholar 

  62. Navalta CP, Polcari A, Webster DM, Boghossian A, Teicher MH. Effects of childhood sexual abuse on neuropsychological and cognitive function in college women. J Neuropsychiatry Clin Neurosci. 2006;18:45–53.

    Article  PubMed  Google Scholar 

  63. Mueller SC, Maheu FS, Dozier M, Peloso E, Mandell D, Leibenluft E, et al. Early-life stress is associated with impairment in cognitive control in adolescence: an fMRI study. Neuropsychologia. 2010;48:3037–44.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Carrion VG, Garrett A, Menon V, Weems CF, Reiss AL. Posttraumatic stress symptoms and brain function during a response-inhibition task: an fMRI study in youth. Depress Anxiety. 2008;25:514–26.

    Article  PubMed  Google Scholar 

  65. Hofer MA. On the nature and consequences of early loss. Psychosom Med. 1996;58:570–81.

    Article  CAS  PubMed  Google Scholar 

  66. Benoit LJ, Holt ES, Posani L, Fusi S, Harris AZ, Canetta S, et al. Adolescent thalamic inhibition leads to long-lasting impairments in prefrontal cortex function. Nat Neurosci. 2022;25:714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Canetta SE, Holt ES, Benoit LJ, Teboul E, Sahyoun GM, Ogden RT, et al. Mature parvalbumin interneuron function in prefrontal cortex requires activity during a postnatal sensitive period. eLife. 2022;11:e80324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Teissier A, Le Magueresse C, Olusakin J, Andrade da Costa BLS, De Stasi AM, Bacci A, et al. Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Mol Psychiatry. 2020;25:1159–74.

    Article  CAS  PubMed  Google Scholar 

  69. Bitzenhofer SH, Popplau JA, Chini M, Marquardt A, Hanganu-Opatz IL. A transient developmental increase in prefrontal activity alters network maturation and causes cognitive dysfunction in adult mice. Neuron. 2021;109:1350–1364 e1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fogaca MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci. 2019;13:87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sparks DW, Tian MK, Sargin D, Venkatesan S, Intson K, Lambe EK. Opposing cholinergic and serotonergic modulation of layer 6 in prefrontal cortex. Front Neural Circuits. 2017;11:107.

    Article  PubMed  Google Scholar 

  72. Tian MK, Schmidt EF, Lambe EK. Serotonergic suppression of mouse prefrontal circuits implicated in task attention. eNeuro. 2016;3:ENEURO.0269-16.2016

    Article  PubMed  PubMed Central  Google Scholar 

  73. Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol. 2011;44:449–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Karst H, Droogers WJ, van der Weerd N, Damsteegt R, van Kronenburg N, Sarabdjitsingh RA, et al. Acceleration of GABA-switch after early life stress changes mouse prefrontal glutamatergic transmission. Neuropharmacology. 2023;234:109543.

    Article  CAS  PubMed  Google Scholar 

  75. Tooley UA, Bassett DS, Mackey AP. Environmental influences on the pace of brain development. Nat Rev Neurosci. 2021;22:372–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hill MN, Eiland L, Lee TTY, Hillard CJ, McEwen BS. Early life stress alters the developmental trajectory of corticolimbic endocannabinoid signaling in male rats. Neuropharmacology. 2019;146:154–62.

    Article  CAS  PubMed  Google Scholar 

  77. Richardson R, Bowers J, Callaghan BL, Baker KD. Does maternal separation accelerate maturation of perineuronal nets and parvalbumin-containing inhibitory interneurons in male and female rats? Dev Cogn Neurosci. 2021;47:100905.

    Article  CAS  PubMed  Google Scholar 

  78. Gee DG, Gabard-Durnam LJ, Flannery J, Goff B, Humphreys KL, Telzer EH, et al. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci USA. 2013;110:15638–43.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Institute of Child Health and Human Development (R01HD095966 and R01HD110541). We thank Catarina Cunha for setting up and training in the VSD experiments.

Author information

Authors and Affiliations

Authors

Contributions

CMT designed the experiments and supervised the project. ECM, CMT, LR, and FA performed the behavioral manipulations, physiological experiments, and analyzed the data. DAW set up the in vivo recordings. MJA performed the pathway analysis. HG, RF, and AC designed, performed, and analyzed the snRNA sequencing experiments. DS designed and supervised the patch-clamp experiments. CMT and FXC wrote the paper with contributions from all co-authors.

Corresponding author

Correspondence to Cátia M. Teixeira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, E.C., Geiger, H., Abreu, F.F. et al. Early-life prefrontal cortex inhibition and early-life stress lead to long-lasting behavioral, transcriptional, and physiological impairments. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02499-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02499-4

Search

Quick links