Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Variants of the CNTNAP2 5′ promoter as risk factors for autism spectrum disorders: a genetic and functional approach

Abstract

Contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin gene superfamily, is one of the best-replicated risk genes for autism spectrum disorders (ASD). ASD are predominately genetically determined neurodevelopmental disorders characterized by impairments of language development, social interaction and communication, as well as stereotyped behavior and interests. Although CNTNAP2 expression levels were proposed to alter ASD risk, no study to date has focused on its 5′ promoter. Here, we directly sequenced the CNTNAP2 5′ promoter region of 236 German families with one child with ASD and detected four novel variants. Furthermore, we genotyped the three most frequent variants (rs150447075, rs34712024, rs71781329) in an additional sample of 356 families and found nominal association of rs34712024G with ASD and rs71781329GCG[7] with language development. The four novel and the three known minor alleles of the identified variants were predicted to alter transcription factor binding sites (TFBS). At the functional level, the respective sequences spanning these seven variants were bound by nuclear factors. In a luciferase promoter assay, the respective minor alleles showed cell line-specific and differentiation stage-dependent effects at the level of promoter activation. The novel potential rare risk-variant M2, a G>A mutation −215 base pairs 5′ of the transcriptional start site, significantly reduced promoter efficiency in HEK293T and in undifferentiated and differentiated neuroblastoid SH-SY5Y cells. This variant was transmitted to a patient with autistic disorder. The under-transmitted, protective minor G allele of the common variant rs34712024, in contrast, increased transcriptional activity. These results lead to the conclusion that the pathomechanism of CNTNAP2 promoter variants on ASD risk is mediated by their effect on TFBSs, and thus confirm the hypothesis that a reduced CNTNAP2 level during neuronal development increases liability for ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D et al. Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 2006; 368: 210–215.

    Article  Google Scholar 

  2. Brugha TS, McManus S, Bankart J, Scott F, Purdon S, Smith J et al. Epidemiology of autism spectrum disorders in adults in the community in England. Arch Gen Psychiatry 2011; 68: 459–465.

    Google Scholar 

  3. WHO. International Classification Of Mental And Behavioral Disorders. Clinical Descriptions And Diagnostic Guidelines, 10th edn. World Health Organization: Geneva, 1992.

  4. APA. Diagnostic And Statistical Manual Of Mental Disorders, Fourth Editiontion, Text Revision (DSM-IV-TR®). American Psychiatric Association, 4th edn. American Psychiatric Publishing: Arlington, VA, USA, 2000.

  5. Freitag CM, Staal W, Klauck SM, Duketis E, Waltes R . Genetics of autistic disorders: review and clinical implications. Eur Child Adolesc Psychiatry 2010; 19: 169–178.

    Article  Google Scholar 

  6. Lichtenstein P, Carlström E, Råstam M, Gillberg C, Anckarsäter H . The genetics of autism spectrum disorders and related neuropsychiatric disorders in childhood. Am J Psychiatry 2010; 167: 1357–1363.

    Article  Google Scholar 

  7. Peñagarikano O, Geschwind DH . What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med 2012; 18: 156–163.

    Article  Google Scholar 

  8. Alarcón M, Cantor RM, Liu J, Gilliam TC, Geschwind DH . Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 2002; 70: 60–71.

    Article  Google Scholar 

  9. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 2008; 82: 160–164.

    Article  CAS  Google Scholar 

  10. Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M et al. A functional genetic link between distinct developmental language disorders. N Engl J Med 2008; 359: 2337–2345.

    Article  CAS  Google Scholar 

  11. Newbury DF, Paracchini S, Scerri TS, Winchester L, Addis L, Richardson AJ et al. Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behav Genet 2011; 41: 90–104.

    Article  CAS  Google Scholar 

  12. Whitehouse AJO, Bishop DVM, Ang QW, Pennell CE, Fisher SE . CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behav 2011; 10: 451–456.

    Article  CAS  Google Scholar 

  13. Whalley HC, O'Connell G, Sussmann JE, Peel A, Stanfield AC, Hayiou-Thomas ME et al. Genetic variation in CNTNAP2 alters brain function during linguistic processing in healthy individuals. Am J Med Genet B Neuropsychiatr Genet 2011; 156: 941–948.

    Article  CAS  Google Scholar 

  14. Eyler LT, Pierce K, Courchesne E . A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain 2012; 135: 949–960.

    Article  Google Scholar 

  15. Bakkaloglu B, O'Roak BJ, Louvi A, Gupta AR, Abelson JF, Morgan TM et al. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 2008; 82: 165–173.

    Article  CAS  Google Scholar 

  16. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 2011; 43: 585–589.

    Article  CAS  Google Scholar 

  17. Caselli R, Mencarelli MA, Papa FT, Ariani F, Longo I, Meloni I et al. Delineation of the phenotype associated with 7q36.1q36.2 deletion: long QT syndrome, renal hypoplasia and mental retardation. Am J Med Genet A 2008; 146: 1195–1199.

    Article  Google Scholar 

  18. Rossi E, Verri AP, Patricelli MG, Destefani V, Ricca I, Vetro A et al. A 12Mb deletion at 7q33–q35 associated with autism spectrum disorders and primary amenorrhea. Eur J Med Genet 2008; 51: 631–638.

    Article  Google Scholar 

  19. Petrin AL, Giacheti CM, Maximino LP, Abramides DVM, Zanchetta S, Rossi NF et al. Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. Am J Med Genet A 2010; 152: 3164–3172.

    Article  Google Scholar 

  20. Poot M, Beyer V, Schwaab I, Damatova N, Slot R, Prothero J et al. Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics 2010; 11: 81–89.

    Article  Google Scholar 

  21. Sehested LT, Møller RS, Bache I, Andersen NB, Ullmann R, Tommerup N et al. Deletion of 7q34-q36.2 in two siblings with mental retardation, language delay, primary amenorrhea, and dysmorphic features. Am J Med Genet A 2010; 152: 3115–3119.

    Article  Google Scholar 

  22. Nord AS, Roeb W, Dickel DE, Walsh T, Kusenda M, O'Connor KL et al. Reduced transcript expression of genes affected by inherited and de novo CNVs in autism. Eur J Hum Genet 2011; 19: 727–731.

    Article  CAS  Google Scholar 

  23. Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 2011; 147: 235–246.

    Article  Google Scholar 

  24. Poliak S . Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol 2003; 162: 1149–1160.

    Article  CAS  Google Scholar 

  25. Alarcon JM, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 2008; 82: 150–159.

    Article  CAS  Google Scholar 

  26. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  Google Scholar 

  27. Shastry BS . SNPs: impact on gene function and phenotype. Methods Mol. Biol. 2009; 578: 3–22.

    Article  CAS  Google Scholar 

  28. Chen Y, Liu T, Yu C, Chiang T, Hwang C . Effects of GC bias in next-generation-sequencing data on de novo genome assembly. PLoS ONE 2013; 8: e62856.

    Article  CAS  Google Scholar 

  29. Klauck SM, Felder B, Kolb-Kokocinski A, Schuster C, Chiocchetti A, Schupp I et al. Mutations in the ribosomal protein gene RPL10 suggest a novel modulating disease mechanism for autism. Mol Psychiatry 2006; 11: 1073–1084.

    Article  CAS  Google Scholar 

  30. Freitag CM, Agelopoulos K, Huy E, Rothermundt M, Krakowitzky P, Meyer J et al. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur Child Adolesc Psychiatry 2010; 19: 67–74.

    Article  Google Scholar 

  31. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview-Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  Google Scholar 

  32. Lord C, Risi S, Lambrecht L, Cook EH Jr., Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.

    Article  CAS  Google Scholar 

  33. Quandt K, Frech K, Karas H, Wingender E, Werner T . MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res 1995; 23: 4878–4884.

    Article  CAS  Google Scholar 

  34. Zheng L, Baumann U, Reymond J . An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res 2004; 32: e115.

    Article  Google Scholar 

  35. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  36. Leduc V, Legault V, Dea D, Poirier J . Normalization of gene expression using SYBR green qPCR: a case for paraoxonase 1 and 2 in Alzheimer's disease brains. J. Neurosci. Methods 2011; 200: 14–19.

    Article  CAS  Google Scholar 

  37. Dignam JD, Lebovitz RM, Roeder RG . Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res 1983; 11: 1475–1489.

    Article  CAS  Google Scholar 

  38. Gauderman W, Morrison J QUANTO 1.1: A computer program for power and sample size calculations for genetic-epidemiology studieshttp://hydra.usc.edu/gxe. 2006.

  39. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  40. Dudbridge F . Likelihood-based association analysis for nuclear families and unrelated ssubjects with missing genotype data. Hum Hered 2008; 66: 87–98.

    Article  Google Scholar 

  41. Konopka G, Wexler E, Rosen E, Mukamel Z, Osborn GE, Chen L et al. Modeling the functional genomics of autism using human neurons. Mol Psychiatry 2012; 17: 202–214.

    Article  CAS  Google Scholar 

  42. Kang HJ, Kawasawa YI, Cheng F, Zhu Y, Xu X, Li M et al. Spatio-temporal transcriptome of the human brain. Nature 2011; 478: 483–489.

    Article  CAS  Google Scholar 

  43. Sakai T, Hino K, Wada S, Maeda H . Identification of the DNA binding specificity of the human ZNF219 protein and its function as a transcriptional repressor. DNA Res 2003; 10: 155–165.

    Article  CAS  Google Scholar 

  44. Frietze S, Lan X, Jin VX, Farnham PJ . Genomic targets of the KRAB and SCAN domain-containing zinc-finger protein 263. J Biol Chem 2010; 285: 1393–1403.

    Article  CAS  Google Scholar 

  45. Buxbaum JD, Silverman J, Keddache M, Smith CJ, Hollander E, Ramoz N et al. Linkage analysis for autism in a subset families with obsessive-compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol Psychiatry 2004; 9: 144–150.

    Article  CAS  Google Scholar 

  46. Lauritsen MB, Als TD, Dahl HA, Flint TJ, Wang AG, Vang M et al. A genome-wide search for alleles and haplotypes associated with autism and related pervasive developmental disorders on the Faroe Islands. Mol Psychiatry 2006; 11: 37–46.

    Article  CAS  Google Scholar 

  47. Hu VW, Sarachana T, Kim KS, Nguyen A, Kulkarni S, Steinberg ME et al. Gene expression profiling differentiates autism case-controls and phenotypic variants of autism spectrum disorders: evidence for circadian rhythm dysfunction in severe autism. Autism Res 2009; 2: 78–97.

    Article  Google Scholar 

  48. Allen-Brady K, Robison R, Cannon D, Varvil T, Villalobos M, Pingree C et al. Genome-wide linkage in Utah autism pedigrees. Mol Psychiatry 2010; 15: 1006–1015.

    Article  CAS  Google Scholar 

  49. Fischbach BV, Trout KL, Lewis J, Luis CA, Sika M . WAGR syndrome: a clinical review of 54 cases. Pediatrics 2005; 116: 984–988.

    Article  Google Scholar 

  50. Chiocchetti AG, Bour HS, Freitag CM . Glutamatergic candidate genes in autism spectrum disorder: an overview. J Neural Transm 2014; 121: 1081–1106.

    Article  CAS  Google Scholar 

  51. Kim SH, Song JY, Joo E, Lee KY, Ahn YM, Kim YS . EGR3 as a potential susceptibility gene for schizophrenia in Korea. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1355–1360.

    Article  CAS  Google Scholar 

  52. Quach DH, Oliveira-Fernandes M, Gruner KA, Tourtellotte WG . A sympathetic neuron autonomous role for Egr3-mediated gene regulation in dendrite morphogenesis and target tissue innervation. J. Neurosci. 2013; 33: 4570–4583.

    Article  CAS  Google Scholar 

  53. Knapska E, Kaczmarek L . A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 2004; 74: 183–211.

    Article  CAS  Google Scholar 

  54. Ebert DH, Greenberg ME . Activity-dependent neuronal signalling and autism spectrum disorder. Nature 2013; 493: 327–337.

    Article  CAS  Google Scholar 

  55. Kyrchanova O, Chetverina D, Maksimenko O, Kullyev A, Georgiev P . Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements. Nucleic Acids Res 2008; 36: 7019–7028.

    Article  CAS  Google Scholar 

  56. Weingarten-Gabbay S, Segal E . The grammar of transcriptional regulation. Hum Genet 2014; 133: 701–711.

    Article  CAS  Google Scholar 

  57. Haas RH, Townsend J, Courchesne E, Lincoln AJ, Schreibman L, Yeung-Courchesne R . Neurologic abnormalities in infantile autism. J. Child Neurol. 1996; 11: 84–92.

    Article  CAS  Google Scholar 

  58. Langen M, Schnack HG, Nederveen H, Bos D, Lahuis BE, Jonge MV de et al. Changes in the developmental trajectories of striatum in autism. Biol. Psychiatry 2009; 66: 327–333.

    Article  Google Scholar 

  59. Strick PL, Dum RP, Fiez JA . Cerebellum and nonmotor function. Annu Rev Neurosci 2009; 32: 413–434.

    Article  CAS  Google Scholar 

  60. Desrochers TM, Badre D . Finding parallels in fronto-striatal organization. Trends Cogn Sci (Regul. Ed.) 2012; 16: 407–408.

    Article  Google Scholar 

  61. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 2010; 466: 368–372.

    Article  CAS  Google Scholar 

  62. Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS et al. Rare structural variation of synapse and neurotransmission genes in autism. Mol Psychiatry 2012; 17: 402–411.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the families and patients for their cooperation and the clinical staff for their support in data collection. We thank Heiko Zerlaut for database management, and Cornelia Wirth and Silvia Lindlar for excellent technical assistance. The study was in part supported by grant Po 255/17-4 of the Deutsche Forschungsgemeinschaft to F Poustka, and grants T 6031000-45 of Saarland University and ERA-NET NEURON/BMBF EUHFAUTISM-01EW1105 to CM Freitag.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Freitag.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiocchetti, A., Kopp, M., Waltes, R. et al. Variants of the CNTNAP2 5′ promoter as risk factors for autism spectrum disorders: a genetic and functional approach. Mol Psychiatry 20, 839–849 (2015). https://doi.org/10.1038/mp.2014.103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.103

This article is cited by

Search

Quick links