Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inositol hexakisphosphate kinase-1 regulates behavioral responses via GSK3 signaling pathways

Abstract

Glycogen synthase kinase 3 (GSK3), a prominent enzyme in carbohydrate metabolism, also has a major role in brain function. It is physiologically regulated by the kinase Akt, which phosphorylates GSK3 to inhibit catalytic activity. Inositol hexakisphosphate-1 (IP6K1) generates the inositol pyrophosphate diphosphoinositol pentakisphosphate (IP7), which physiologically inhibits Akt leading to enhanced GSK3 activity. We report that IP6K1 binds and stimulates GSK3 enzymatic activity in a non-catalytic fashion. Physiological relevance is evident in the inhibition of GSK3 activity in the brains of IP6K1-deleted mice. Behavioral alterations of IP6K1 knockout mice resemble those of GSK3 mutants. Accordingly, modulation of IP6K1–GSK3β interaction may exert beneficial effects in psychiatric disorders involving GSK3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sutherland C, Leighton IA, Cohen P . Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J 1993; 296: 15–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Saito Y, Vandenheede JR, Cohen P . The mechanism by which epidermal growth factor inhibits glycogen synthase kinase 3 in A431 cells. Biochem J 1994; 303: 27–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Stambolic V, Woodgett JR . Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 1994; 303: 701–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaidanovich-Beilin O, Beaulieu JM, Jope RS, Woodgett JR . Neurological functions of the masterswitch protein kinase - gsk-3. Front Mol Neurosci 2012; 5: 48.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    Article  CAS  PubMed  Google Scholar 

  6. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 1997; 7: 261–269.

    Article  CAS  PubMed  Google Scholar 

  7. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM . Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005; 307: 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  8. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    Article  CAS  PubMed  Google Scholar 

  9. Frame S, Cohen P, Biondi RM . A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell 2001; 7: 1321–1327.

    Article  CAS  PubMed  Google Scholar 

  10. Beaulieu JM . A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health. J Psychiatry Neurosci 2012; 37: 7–16.

    PubMed  PubMed Central  Google Scholar 

  11. Tan HY, Chen AG, Kolachana B, Apud JA, Mattay VS, Callicott JH et al. Effective connectivity of AKT1-mediated dopaminergic working memory networks and pharmacogenetics of anti-dopaminergic treatment. Brain 2012; 135: 1436–1445.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ . beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 1990; 248: 1547–1550.

    Article  CAS  PubMed  Google Scholar 

  13. Ferguson SS, Downey WE, Colapietro AM, Barak LS, Ménard L, Caron MG . Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science 1996; 271: 363–366.

    Article  CAS  PubMed  Google Scholar 

  14. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG . An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122: 261–273.

    Article  CAS  PubMed  Google Scholar 

  15. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ et al. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999; 283: 655–661.

    Article  CAS  PubMed  Google Scholar 

  16. Beaulieu JM, Gainetdinov RR, Caron MG . Akt/GSK3 signaling in the action of psychotropic drugs. Annu Rev Pharmacol Toxicol 2009; 49: 327–347.

    Article  CAS  PubMed  Google Scholar 

  17. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V et al. A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 2008; 132: 125–136.

    Article  CAS  PubMed  Google Scholar 

  18. O'Brien WT, Huang J, Buccafusca R, Garskof J, Valvezan AJ, Berry GT et al. Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest 2011; 121: 3756–3762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klein PS, Melton DA . A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA. 1996; 93: 8455–8459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stambolic V, Ruel L, Woodgett JR . Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 1996; 6: 1664–1668.

    Article  CAS  PubMed  Google Scholar 

  21. Dale TC . Signal transduction by the Wnt family of ligands. Biochem J 1998; 329: 209–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu D, Pan W . GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 2010; 35: 161–168.

    Article  CAS  PubMed  Google Scholar 

  23. Logan CY, Nusse R . The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004; 20: 781–810.

    Article  CAS  PubMed  Google Scholar 

  24. Freyberg Z, Ferrando SJ, Javitch JA . Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry 2010; 167: 388–396.

    Article  PubMed  Google Scholar 

  25. Kvajo M, McKellar H, Gogos JA . Molecules, signaling, and schizophrenia. Curr Top Behav Neurosci 2010; 4: 629–656.

    Article  PubMed  Google Scholar 

  26. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA . Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004; 36: 131–137.

    Article  CAS  PubMed  Google Scholar 

  27. Tan HY, Nicodemus KK, Chen Q, Li Z, Brooke JK, Honea R et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 2008; 118: 2200–2208.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Beaulieu JM, Gainetdinov RR . The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011; 63: 182–217.

    Article  CAS  PubMed  Google Scholar 

  29. Li YC, Xi D, Roman J, Huang YQ, Gao WJ . Activation of glycogen synthase kinase-3 beta is required for hyperdopamine and D2 receptor-mediated inhibition of synaptic NMDA receptor function in the rat prefrontal cortex. J Neurosci 2009; 29: 15551–15563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol 2008; (153:(Suppl 1): S428–S437.

  31. Berridge MJ, Lipp P, Bootman MD . The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 2000; 1: 11–21.

    Article  CAS  PubMed  Google Scholar 

  32. Saiardi A . Cell signalling by inositol pyrophosphates. Subcell Biochem 2012; 59: 413–443.

    Article  CAS  PubMed  Google Scholar 

  33. Chakraborty A, Kim S, Snyder SH . Inositol pyrophosphates as mammalian cell signals. Sci Signal 2011; 4: re1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR et al. Inositol pyrophosphates inhibit Akt signaling, regulate insulin sensitivity and weight gain. Cell 2010; 143: 897–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Illies C, Gromada J, Fiume R, Leibiger B, Yu J, Juhl K et al. Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 2007; 318: 1299–1302.

    Article  CAS  PubMed  Google Scholar 

  36. Szijgyarto Z, Garedew A, Azevedo C, Saiardi A . Influence of inositol pyrophosphates on cellular energy dynamics. Science 2011; 334: 802–805.

    Article  CAS  PubMed  Google Scholar 

  37. Prasad A, Jia Y, Chakraborty A, Li Y, Jain SK, Zhong J et al. Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling. Nat Immunol 2011; 12: 752–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sarmah B, Wente SR . Inositol hexakisphosphate kinase-2 acts as an effector of the vertebrate Hedgehog pathway. Proc Natl Acad Sci USA 2010; 107: 19921–19926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. York SJ, Armbruster BN, Greenwell P, Petes TD, York JD . Inositol diphosphate signaling regulates telomere length. J Biol Chem 2005; 280: 4264–4269.

    Article  CAS  PubMed  Google Scholar 

  40. Saiardi A, Resnick AC, Snowman AM, Wendland B, Snyder SH . Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci USA. 2005; 102: 1911–1914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee YS, Mulugu S, York JD, O'Shea EK . Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 2007; 316: 109–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morrison BH, Bauer JA, Kalvakolanu DV, Lindner DJ . Inositol hexakisphosphate kinase 2 mediates growth suppressive and apoptotic effects of interferon-beta in ovarian carcinoma cells. J Biol Chem 2001; 276: 24965–24970.

    Article  CAS  PubMed  Google Scholar 

  43. Nagata E, Luo HR, Saiardi A, Bae BI, Suzuki N, Snyder SH . Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J Biol Chem 2005; 280: 1634–1640.

    Article  CAS  PubMed  Google Scholar 

  44. Koldobskiy MA, Chakraborty A, Werner JK, Snowman AM, Juluri KR, Vandiver MS et al. p53 mediated apoptosis requires inositol hexakisphosphate kinase-2. Proc Natl Acad Sci USA 2010; 107: 20947–20951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chakraborty A, Koldobskiy MA, Sixt KM, Juluri KR, Mustafa AK, Snowman AM et al. HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc Natl Acad Sci USA 2008; 105: 1134–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chakraborty A, Werner JK, Koldobskiy MA, Mustafa AK, Juluri KR, Pietropaoli J et al. Casein kinase-2 mediates cell survival through phosphorylation and degradation of inositol hexakisphosphate kinase-2. Proc Natl Acad Sci USA. 2011; 108: 2205–2209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saiardi A, Erdjument-Bromage H, Snowman AM, Tempst P, Snyder SH . Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 1999; 9: 1323–1326.

    Article  CAS  PubMed  Google Scholar 

  48. Saiardi A, Bhandari R, Resnick AC, Snowman AM, Snyder SH . Phosphorylation of proteins by inositol pyrophosphates. Science 2004; 306: 2101–2105.

    Article  CAS  PubMed  Google Scholar 

  49. Bhandari R, Sairdi A, Ahmadibeni Y, Snowman AM, Resnick AC, Kristiansen TZ et al. Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci USA 2007; 104: 15305–15310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Luo HR, Saiardi A, Nagata E, Ye K, Yu H, Jung TS et al. GRAB: a physiologic guanine nucleotide exchange factor for Rab3A, which interacts with inositol hexakisphosphate kinase. Neuron 2001; 31: 439–451.

    Article  CAS  PubMed  Google Scholar 

  51. Bhandari R, Juluri KR, Resnick AC, Snyder SH . Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc Natl Acad Sci USA 2008; 105: 2349–2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Safrany ST, Shears SB . Turnover of bis-diphosphoinositol tetrakisphosphate in a smooth muscle cell line is regulated by beta2-adrenergic receptors through a cAMP-mediated, A-kinase-independent mechanism. EMBO J 1998; 17: 1710–1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beaulieu JM, Sotnikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004; 101: 5099–5104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 2004; 3: 287–302.

    Article  CAS  PubMed  Google Scholar 

  55. Guitton MJ, Kin Y, Dudai Y . Taste-dependent sociophobia: when food and company do not mix. Behav Brain Res 2008; 191: 148–152.

    Article  PubMed  Google Scholar 

  56. Latapy C, Rioux V, Guitton MJ, Beaulieu JM . Selective deletion of forebrain glycogen synthase kinase 3β reveals a central role in serotonin-sensitive anxiety and social behaviour. Philos Trans R Soc Lond B Biol Sci 2012; 367: 2460–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sanchez S, Sayas CL, Lim F, Diaz-Nido J, Avila J, Wandosell F . The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. J Neurochem 2001; 78: 468–481.

    Article  CAS  PubMed  Google Scholar 

  58. Martinez A, Alonso M, Castro A, Pérez C, Moreno FJ . First non-ATP competitive glycogen synthase kinase 3 beta (GSK-3beta) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J Med Chem 2002; 45: 1292–1299.

    Article  CAS  PubMed  Google Scholar 

  59. Doble BW, Woodgett JR . GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 2003; 116: 1175–1186.

    Article  CAS  PubMed  Google Scholar 

  60. Fiol CJ, William JS, Chou CH, Wang QM, Roach PJ, Andrisani OM . A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J Biol Chem 1994; 269: 32187–32193.

    CAS  PubMed  Google Scholar 

  61. Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon VA . chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 2006; 24: 627–633.

    Article  CAS  PubMed  Google Scholar 

  62. Sperber BR, Leight S, Goedert M, Lee VM . Glycogen synthase kinase-3 beta phosphorylates tau protein at multiple sites in intact cells. Neurosci Lett 1995; 197: 149–153.

    Article  CAS  PubMed  Google Scholar 

  63. Hernández F, de Barreda EG, Fuster-Matanzo A, Goñi-Oliver P, Lucas JJ, Avila J . The role of GSK3 in Alzheimer disease. Brain Res Bull 2009; 80: 248–250.

    Article  PubMed  Google Scholar 

  64. Shears SB . Diphosphoinositol polyphosphates: metabolic messengers? Mol Pharmacol 2009; 76: 236–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barker CJ, Illies C, Gaboardi GC, Berggren PO . Inositol pyrophosphates: structure, enzymology and function. Cell Mol Life Sci. 2009; 66: 3851–3871.

    Article  CAS  PubMed  Google Scholar 

  66. Polter A, Beurel E, Yang S, Garner R, Song L, Miller CA et al. Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. Neuropsychopharmacology 2010; 35: 1761–1774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 2006; 26: 9022–9029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kaidanovich-Beilin O, Lipina TV, Takao K, van Eede M, Hattori S, Laliberté C et al. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice. Mol Brain 2009; 2: 35.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC et al. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci USA 2008; 105: 1333–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Resnick AC, Snowman AM, Kang BN, Hurt KJ, Snyder SH, Saiardi A . Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc Natl Acad Sci USA. 2005; 102: 12783–12788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim S, Kim SF, Maag D, Maxwell MJ, Resnick AC, Juluri KR et al. Amino acid signaling to mTOR mediated by inositol polyphosphate multikinase. Cell Metab 2011; 13: 215–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Megna JL, Schwartz TL, Siddiqui UA, Herrera Rojas M . Obesity in adults with serious and persistent mental illness: a review of postulated mechanisms and current interventions. Ann Clin Psychiatry 2011; 23: 131–140.

    PubMed  Google Scholar 

  73. Kaidanovich-Beilin O, Cha DS, McIntyre RS . Crosstalk between metabolic and neuropsychiatric disorders. F1000 Biol Rep 2012; 4: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Naderali EK, Ratcliffe SH, Dale MC . Obesity and Alzheimer’s disease: a link between body weight and cognitive function in old age. Am J Alzheimers Dis Other Demen 2009; 24: 445–449.

    Article  PubMed  Google Scholar 

  75. Jope RS, Johnson GV . The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 2004; 29: 95–102.

    Article  CAS  PubMed  Google Scholar 

  76. Sutherland C . What are the bona fide GSK3 substrates? Int J Alzheimers Dis 2011; 2011: 505–607.

    Google Scholar 

  77. Girgis RR, Javitch JA, Lieberman JA . Antipsychotic drug mechanisms: links between therapeutic effects, metabolic side effects and the insulin signaling pathway. Mol Psychiatry 2008; 13: 918–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes? J Alzheimers Dis 2005; 7: 63–80.

    Article  CAS  PubMed  Google Scholar 

  79. Weiden PJ . Switching antipsychotics as a treatment strategy for antipsychotic-induced weight gain and dyslipidemia. J Clin Psychiatry 2007; 68: 34–39.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Lynda Hester for primary neuronal cultures; Masoumeh Saleh, Kathye Aubée and Nathalie Bouchard for mouse colony maintenance; Adele Snowman and Akrita Bhatnagar for protein purification; Krishna Juluri for providing human IP6K1 bacterial expression constructs and James Barrow for kindly providing synthetic IP7 for assay. This work was supported by US Public Health Service Grants MH18501 and DA-000266 (to SHS) and a Canadian Institutes of Health Research (CIHR, to JMB). JMB holds a Canada Research Chair in Molecular Psychiatry and is NARSAD Vital Projects Fund investigator.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S H Snyder or J-M Beaulieu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, A., Latapy, C., Xu, J. et al. Inositol hexakisphosphate kinase-1 regulates behavioral responses via GSK3 signaling pathways. Mol Psychiatry 19, 284–293 (2014). https://doi.org/10.1038/mp.2013.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.21

Keywords

This article is cited by

Search

Quick links