Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Schizophrenia: a disorder of broken brain bioenergetics

Abstract

A substantial and diverse body of literature suggests that the pathophysiology of schizophrenia is related to deficits of bioenergetic function. While antipsychotics are an effective therapy for the management of positive psychotic symptoms, they are not efficacious for the complete schizophrenia symptom profile, such as the negative and cognitive symptoms. In this review, we discuss the relationship between dysfunction of various metabolic pathways across different brain regions in relation to schizophrenia. We contend that several bioenergetic subprocesses are affected across the brain and such deficits are a core feature of the illness. We provide an overview of central perturbations of insulin signaling, glycolysis, pentose-phosphate pathway, tricarboxylic acid cycle, and oxidative phosphorylation in schizophrenia. Importantly, we discuss pharmacologic and nonpharmacologic interventions that target these pathways and how such interventions may be exploited to improve the symptoms of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the major reported perturbations of bioenergetic deficits in schizophrenia.
Fig. 2: Hypothesized therapeutics for schizophrenia that exploit perturbed metabolic functioning in the brain.

Similar content being viewed by others

References

  1. Saha S, Chant D, McGrath J. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch Gen Psychiatry. 2007;64:1123–31.

    Article  PubMed  Google Scholar 

  2. Hennekens CH, Hennekens AR, Hollar D, Casey DE. Schizophrenia and increased risks of cardiovascular disease. Am Heart J. 2005;150:1115–21.

    Article  PubMed  Google Scholar 

  3. Cloutier M, Aigbogun MS, Guerin A, Nitulescu R, Ramanakumar AV, Kamat SA, et al. The economic burden of schizophrenia in the United States in 2013. J Clin Psychiatry. 2016;77:764–71.

    Article  PubMed  Google Scholar 

  4. McGrath J, Saha S, Chant D, Welham J. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev. 2008;30:67–76.

    Article  PubMed  Google Scholar 

  5. McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D. A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med. 2004;2:13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. PLoS Med. 2005;2:e141.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fioravanti M, Carlone O, Vitale B, Cinti ME, Clare L. A meta-analysis of cognitive deficits in adults with a diagnosis of schizophrenia. Neuropsychol Rev. 2005;15:73–95.

    Article  PubMed  Google Scholar 

  8. Young JW, Geyer MA. Developing treatments for cognitive deficits in schizophrenia: the challenge of translation. J Psychopharmacol. 2015;29:178–96.

    Article  CAS  PubMed  Google Scholar 

  9. Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S, et al. Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry. 2004;56:301–7.

    Article  PubMed  Google Scholar 

  10. Meltzer HY. New trends in the treatment of schizophrenia. CNS Neurol Disord Drug Targets. 2017;16:900–6.

    CAS  PubMed  Google Scholar 

  11. Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet. 2009;373:31–41.

    Article  CAS  PubMed  Google Scholar 

  12. Agid O, Kapur S, Remington G. Emerging drugs for schizophrenia. Expert Opin Emerg Drugs. 2008;13:479–95.

    Article  CAS  PubMed  Google Scholar 

  13. Lally J, MacCabe JH. Antipsychotic medication in schizophrenia: a review. Br Med Bull. 2015;114:169–79.

    Article  CAS  PubMed  Google Scholar 

  14. Gemperle AY, McAllister KH, Olpe HR. Differential effects of iloperidone, clozapine, and haloperidol on working memory of rats in the delayed non-matching-to-position paradigm. Psychopharmacology. 2003;169:354–64.

    Article  CAS  PubMed  Google Scholar 

  15. Depoortere R, Boulay D, Perrault G, Bergis O, Decobert M, Francon D, et al. SSR181507, a dopamine D2 receptor antagonist and 5-HT1A receptor agonist. II: behavioral profile predictive of an atypical antipsychotic activity. Neuropsychopharmacology. 2003;28:1889–902.

    Article  CAS  PubMed  Google Scholar 

  16. Szoke A, Trandafir A, Dupont ME, Meary A, Schurhoff F, Leboyer M. Longitudinal studies of cognition in schizophrenia: meta-analysis. Br J Psychiatry. 2008;192:248–57.

    Article  PubMed  Google Scholar 

  17. Goldberg TE, Goldman RS, Burdick KE, Malhotra AK, Lencz T, Patel RC, et al. Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Arch Gen Psychiatry. 2007;64:1115–22.

    Article  CAS  PubMed  Google Scholar 

  18. Green MF, Kern RS, Braff DL, Mintz J. Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophrenia Bull. 2000;26:119–36.

    Article  CAS  Google Scholar 

  19. Du F, Yuksel C, Chouinard VA, Huynh P, Ryan K, Cohen BM, et al. Abnormalities in high-energy phosphate metabolism in first-episode bipolar disorder measured using (31)P-magnetic resonance spectroscopy. Biol Psychiatry. 2018;84:797–802.

    Article  CAS  PubMed  Google Scholar 

  20. Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D. The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci. 2017;11:493.

    Article  PubMed  PubMed Central  Google Scholar 

  21. van Welie H, Derks EM, Verweij KH, de Valk HW, Kahn RS, Cahn W. The prevalence of diabetes mellitus is increased in relatives of patients with a non-affective psychotic disorder. Schizophrenia Res. 2013;143:354–7.

    Article  Google Scholar 

  22. Liu Y, Li Z, Zhang M, Deng Y, Yi Z, Shi T. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med Genom. 2013;6:S17.

    Article  Google Scholar 

  23. Lin PI, Shuldiner AR. Rethinking the genetic basis for comorbidity of schizophrenia and type 2 diabetes. Schizophrenia Res. 2010;123:234–43.

    Article  CAS  Google Scholar 

  24. Hansen T, Ingason A, Djurovic S, Melle I, Fenger M, Gustafsson O, et al. At-risk variant in TCF7L2 for type II diabetes increases risk of schizophrenia. Biol Psychiatry. 2011;70:59–63.

    Article  CAS  PubMed  Google Scholar 

  25. Hackinger S, Prins B, Mamakou V, Zengini E, Marouli E, Brcic L, et al. Evidence for genetic contribution to the increased risk of type 2 diabetes in schizophrenia. Transl Psychiatry. 2018;8:252.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Agarwal SM, Caravaggio F, Costa-Dookhan KA, Castellani L, Kowalchuk C, Asgariroozbehani R, et al. Brain insulin action in schizophrenia: something borrowed and something new. Neuropharmacology. 2020;163:107633.

    Article  CAS  PubMed  Google Scholar 

  27. Chouinard VA, Henderson DC, Dalla Man C, Valeri L, Gray BE, Ryan KP, et al. Impaired insulin signaling in unaffected siblings and patients with first-episode psychosis. Mol Psychiatry. 2019;24:1513–22.

    Article  CAS  PubMed  Google Scholar 

  28. Dipasquale S, Pariante CM, Dazzan P, Aguglia E, McGuire P, Mondelli V. The dietary pattern of patients with schizophrenia: a systematic review. J Psychiatr Res. 2013;47:197–207.

    Article  PubMed  Google Scholar 

  29. Vancampfort D, Probst M, Knapen J, Carraro A, De, Hert M. Associations between sedentary behaviour and metabolic parameters in patients with schizophrenia. Psychiatry Res. 2012;200:73–8.

    Article  PubMed  Google Scholar 

  30. Crawford MJ, Jayakumar S, Lemmey SJ, Zalewska K, Patel MX, Cooper SJ, et al. Assessment and treatment of physical health problems among people with schizophrenia: national cross-sectional study. Br J Psychiatry. 2014;205:473–7.

    Article  PubMed  Google Scholar 

  31. van Nimwegen LJ, Storosum JG, Blumer RM, Allick G, Venema HW, de Haan L, et al. Hepatic insulin resistance in antipsychotic naive schizophrenic patients: stable isotope studies of glucose metabolism. J Clin Endocrinol Metab. 2008;93:572–7.

    Article  PubMed  CAS  Google Scholar 

  32. Padmanabhan JL, Nanda P, Tandon N, Mothi SS, Bolo N, McCarroll S, et al. Polygenic risk for type 2 diabetes mellitus among individuals with psychosis and their relatives. J Psychiatr Res. 2016;77:52–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dash S, Xiao C, Morgantini C, Koulajian K, Lewis GF. Intranasal insulin suppresses endogenous glucose production in humans compared with placebo in the presence of similar venous insulin concentrations. Diabetes. 2015;64:766–74.

    Article  CAS  PubMed  Google Scholar 

  34. Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376–82.

    Article  CAS  PubMed  Google Scholar 

  35. Abraham MA, Yue JT, LaPierre MP, Rutter GA, Light PE, Filippi BM, et al. Hypothalamic glucagon signals through the KATP channels to regulate glucose production. Mol Metab. 2014;3:202–8.

    Article  CAS  PubMed  Google Scholar 

  36. Pocai A, Lam TK, Gutierrez-Juarez R, Obici S, Schwartz GJ, Bryan J, et al. Hypothalamic K(ATP) channels control hepatic glucose production. Nature. 2005;434:1026–31.

    Article  CAS  PubMed  Google Scholar 

  37. Pillinger T, Beck K, Gobjila C, Donocik JG, Jauhar S, Howes OD. Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74:261–9.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fernandez-Egea E, Bernardo M, Donner T, Conget I, Parellada E, Justicia A, et al. Metabolic profile of antipsychotic-naive individuals with non-affective psychosis. Br J Psychiatry. 2009;194:434–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ryan MC, Collins P, Thakore JH. Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am J Psychiatry. 2003;160:284–9.

    Article  PubMed  Google Scholar 

  40. Wu X, Huang Z, Wu R, Zhong Z, Wei Q, Wang H, et al. The comparison of glycometabolism parameters and lipid profiles between drug-naive, first-episode schizophrenia patients and healthy controls. Schizophrenia Res. 2013;150:157–62.

    Article  Google Scholar 

  41. Perry BI, McIntosh G, Weich S, Singh S, Rees K. The association between first-episode psychosis and abnormal glycaemic control: systematic review and meta-analysis. Lancet Psychiatry. 2016;3:1049–58.

    Article  PubMed  Google Scholar 

  42. Steiner J, Berger M, Guest PC, Dobrowolny H, Westphal S, Schiltz K, et al. Assessment of insulin resistance among drug-naive patients with first-episode schizophrenia in the context of hormonal stress axis activation. JAMA Psychiatry. 2017;74:968–70.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Berger M, Juster RP, Westphal S, Amminger GP, Bogerts B, Schiltz K, et al. Allostatic load is associated with psychotic symptoms and decreases with antipsychotic treatment in patients with schizophrenia and first-episode psychosis. Psychoneuroendocrinology. 2018;90:35–42.

    Article  PubMed  Google Scholar 

  44. Magistretti PJ. Neuron-glia metabolic coupling and plasticity. Exp Physiol. 2011;96:407–10.

    Article  CAS  PubMed  Google Scholar 

  45. Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94:1–14.

    Article  CAS  PubMed  Google Scholar 

  46. Rinholm JE, Hamilton NB, Kessaris N, Richardson WD, Bergersen LH, Attwell D. Regulation of oligodendrocyte development and myelination by glucose and lactate. J Neurosci. 2011;31:538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell. 2011;144:810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagase M, Takahashi Y, Watabe AM, Kubo Y, Kato F. On-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmission. J Neurosci. 2014;34:2605–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G. Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res. 2012;46:95–104.

    Article  CAS  PubMed  Google Scholar 

  50. Rowland LM, Pradhan S, Korenic S, Wijtenburg SA, Hong LE, Edden RA, et al. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry. 2016;6:e967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang J, Chen T, Sun L, Zhao Z, Qi X, Zhou K, et al. Potential metabolite markers of schizophrenia. Mol Psychiatry. 2013;18:67–78.

    Article  CAS  PubMed  Google Scholar 

  52. Halim ND, Lipska BK, Hyde TM, Deep-Soboslay A, Saylor EM, Herman MM, et al. Increased lactate levels and reduced pH in postmortem brains of schizophrenics: medication confounds. J Neurosci Methods. 2008;169:208–13.

    Article  CAS  PubMed  Google Scholar 

  53. Sullivan CR, Mielnik CA, Funk A, O’Donovan SM, Bentea E, Pletnikov M, et al. Measurement of lactate levels in postmortem brain, iPSCs, and animal models of schizophrenia. Sci Rep. 2019;9:5087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dean B, Thomas N, Scarr E, Udawela M. Evidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophrenia. Transl Psychiatry. 2016;6:e949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du F, Cooper AJ, Thida T, Sehovic S, Lukas SE, Cohen BM, et al. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. JAMA Psychiatry. 2014;71:19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Park C, Park SK. Molecular links between mitochondrial dysfunctions and schizophrenia. Mol Cells. 2012;33:105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Park HJ, Choi I, Leem KH. Decreased brain pH and pathophysiology in schizophrenia. Int J Mol Sci. 2021;22:8358.

  58. Sullivan CR, Koene RH, Hasselfeld K, O’Donovan SM, Ramsey A, McCullumsmith RE. Neuron-specific deficits of bioenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry. 2019;24:1319–28.

    Article  CAS  PubMed  Google Scholar 

  59. Tourigny DS, Karim MKA, Echeveste R, Kotter MRN, O’Neill JS. Energetic substrate availability regulates synchronous activity in an excitatory neural network. PloS ONE. 2019;14:e0220937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 2013;36:587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jang S, Nelson JC, Bend EG, Rodriguez-Laureano L, Tueros FG, Cartagenova L, et al. Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron. 2016;90:278–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knull HR. Compartmentation of glycolytic-enzymes in nerve-endings as determined by glutaraldehyde fixation. J Biol Chem. 1980;255:6439–44.

    Article  CAS  PubMed  Google Scholar 

  63. Ikemoto A, Bole DG, Ueda T. Glycolysis and glutamate accumulation into synaptic vesicles. Role of glyceraldehyde phosphate dehydrogenase and 3-phosphoglycerate kinase. J Biol Chem. 2003;278:5929–40.

    Article  CAS  PubMed  Google Scholar 

  64. Ishida A, Noda Y, Ueda T. Synaptic vesicle-bound pyruvate kinase can support vesicular glutamate uptake. Neurochem Res. 2009;34:807–18.

    Article  CAS  PubMed  Google Scholar 

  65. Jurcovicova J. Glucose transport in brain—effect of inflammation. Endocr Regul. 2014;48:35–48.

    Article  CAS  PubMed  Google Scholar 

  66. Ren H, Vieira-de-Abreu A, Yan S, Reilly AM, Chan O, Accili D. Altered central nutrient sensing in male mice lacking insulin receptors in Glut4-expressing neurons. Endocrinology. 2019;160:2038–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Alquier T, Leloup C, Lorsignol A, Penicaud L. Translocable glucose transporters in the brain—where are we in 2006? Diabetes. 2006;55:S131–8.

    Article  CAS  Google Scholar 

  68. Leloup C, Arluison M, Kassis N, Lepetit N, Cartier N, Ferre P, et al. Discrete brain areas express the insulin-responsive glucose transporter GLUT4. Brain Res Mol Brain Res. 1996;38:45–53.

    Article  CAS  PubMed  Google Scholar 

  69. McDermott E, de Silva P. Impaired neuronal glucose uptake in pathogenesis of schizophrenia—can GLUT 1 and GLUT 3 deficits explain imaging, post-mortem and pharmacological findings? Med Hypotheses. 2005;65:1076–81.

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease. FEBS Lett. 2008;582:359–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shan D, Mount D, Moore S, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal partitioning of hexokinase 1 suggests disruption of a glutamate transport protein complex in schizophrenia. Schizophrenia Res. 2014;154:1–13.

    Article  Google Scholar 

  72. Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V. Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem. 2008;283:13482–90.

    Article  CAS  PubMed  Google Scholar 

  73. Wilson JE. Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol. 2003;206:2049–57.

    Article  CAS  PubMed  Google Scholar 

  74. Sullivan CR, Mielnik CA, O’Donovan SM, Funk AJ, Bentea E, DePasquale EA, et al. Connectivity analyses of bioenergetic changes in schizophrenia: identification of novel treatments. Mol Neurobiol. 2019;56:4492–517.

    Article  CAS  PubMed  Google Scholar 

  75. Sullivan CR, Koene RH, Hasselfeld K, O’Donovan SM, Ramsey A, McCullumsmith RE. Neuron-specific deficits of bioenergetic processes in the dorsolateral prefrontal cortex in schizophrenia. Mol Psychiatry. 2019;24:1319–28.

  76. Stone WS, Faraone SV, Su J, Tarbox SI, Van Eerdewegh P, Tsuang MT. Evidence for linkage between regulatory enzymes in glycolysis and schizophrenia in a multiplex sample. Am J Med Genet B Neuropsychiatr Genet. 2004;127B:5–10.

    Article  PubMed  Google Scholar 

  77. Beard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010;115:297–313.

    Article  CAS  PubMed  Google Scholar 

  78. Ongur D, Prescot AP, Jensen JE, Cohen BM, Renshaw PF. Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Res. 2009;172:44–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74:400–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress and neurodegeneration. Eur J Biochem. 2000;267:4904–11.

    Article  CAS  PubMed  Google Scholar 

  81. Chowdari KV, Bamne MN, Nimgaonkar VL. Genetic association studies of antioxidant pathway genes and schizophrenia. Antioxid Redox Signal. 2011;15:2037–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9:684–97.

    Article  CAS  PubMed  Google Scholar 

  83. Bolanos JP, Almeida A, Moncada S. Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci. 2010;35:145–9.

    Article  CAS  PubMed  Google Scholar 

  84. Rodriguez-Rodriguez P, Almeida A, Bolanos JP. Brain energy metabolism in glutamate-receptor activation and excitotoxicity: role for APC/C-Cdh1 in the balance glycolysis/pentose phosphate pathway. Neurochem Int. 2013;62:750–6.

    Article  CAS  PubMed  Google Scholar 

  85. Burgoyne RD, Morgan A. Cysteine string protein (CSP) and its role in preventing neurodegeneration. Semin Cell Dev Biol. 2015;40:153–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stipanuk MH, Dominy JE Jr., Lee JI, Coloso RM. Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr. 2006;136:1652S–9S.

    Article  CAS  PubMed  Google Scholar 

  87. McBean GJ. Cerebral cystine uptake: a tale of two transporters. Trends Pharmacol Sci. 2002;23:299–302.

    Article  CAS  PubMed  Google Scholar 

  88. Bentea E, Villers A, Moore C, Funk AJ, O’Donovan SM, Verbruggen L, et al. Corticostriatal dysfunction and social interaction deficits in mice lacking the cystine/glutamate antiporter. Mol Psychiatry. 2021;26:4754–69.

  89. Wang LJ, Lin PY, Lee Y, Huang YC, Wu CC, Hsu ST, et al. Increased serum levels of cysteine in patients with schizophrenia: A potential marker of cognitive function preservation. Schizophrenia Res. 2018;192:391–7.

    Article  Google Scholar 

  90. Yao JK, Leonard S, Reddy R. Altered glutathione redox state in schizophrenia. Dis Mark. 2006;22:83–93.

    Article  CAS  Google Scholar 

  91. Pennington K, Beasley CL, Dicker P, Fagan A, English J, Pariante CM, et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry. 2008;13:1102–17.

    Article  CAS  PubMed  Google Scholar 

  92. Martins-de-Souza D, Maccarrone G, Wobrock T, Zerr I, Gormanns P, Reckow S, et al. Proteome analysis of the thalamus and cerebrospinal fluid reveals glycolysis dysfunction and potential biomarkers candidates for schizophrenia. J Psychiatr Res. 2010;44:1176–89.

    Article  PubMed  Google Scholar 

  93. Puthumana JS, Regenold WT. Glucose-6-phosphate dehydrogenase activity in bipolar disorder and schizophrenia: relationship to mitochondrial impairment. J Psychiatr Res. 2019;112:99–103.

    Article  PubMed  Google Scholar 

  94. Tosic M, Ott J, Barral S, Bovet P, Deppen P, Gheorghita F, et al. Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet. 2006;79:586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gysin R, Kraftsik R, Sandell J, Bovet P, Chappuis C, Conus P, et al. Impaired glutathione synthesis in schizophrenia: convergent genetic and functional evidence. Proc Natl Acad Sci USA. 2007;104:16621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ma J, Li DM, Zhang R, Yang XD, Gao CG, Lu SM, et al. Genetic analysis of glutamate cysteine ligase modifier (GCLM) gene and schizophrenia in Han Chinese. Schizophr Res. 2010;119:273–4.

    Article  PubMed  Google Scholar 

  97. Butticaz C, Werge T, Beckmann JS, Cuenod M, Do KQ, Rivolta C. Mutation screening of the glutamate cysteine ligase modifier (GCLM) gene in patients with schizophrenia. Psychiatr Genet. 2009;19:201–8.

    Article  PubMed  Google Scholar 

  98. Mishkovsky M, Comment A, Gruetter R. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance. J Cereb Blood Flow Metab. 2012;32:2108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sullivan CR, O’Donovan SM, McCullumsmith RE, Ramsey A. Defects in bioenergetic coupling in schizophrenia. Biol Psychiatry. 2018;83:739–50.

    Article  CAS  PubMed  Google Scholar 

  100. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 2002;22:2718–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bubber P, Hartounian V, Gibson GE, Blass JP. Abnormalities in the tricarboxylic acid (TCA) cycle in the brains of schizophrenia patients. Eur Neuropsychopharmacol. 2011;21:254–60.

    Article  CAS  PubMed  Google Scholar 

  102. Bergman O, Ben-Shachar D. Mitochondrial Oxidative Phosphorylation System (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can J Psychiatry. 2016;61:457–69.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Valsecchi F, Ramos-Espiritu LS, Buck J, Levin LR, Manfredi G. cAMP and mitochondria. Physiology. 2013;28:199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 2009;9:265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N, et al. Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell. 2004;117:773–86.

    Article  CAS  PubMed  Google Scholar 

  106. Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell. 2005;122:669–82.

    Article  CAS  PubMed  Google Scholar 

  107. Huttemann M, Helling S, Sanderson TH, Sinkler C, Samavati L, Mahapatra G, et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta. 2012;1817:598–609.

    Article  CAS  PubMed  Google Scholar 

  108. Du F, Zhu XH, Zhang Y, Friedman M, Zhang N, Ugurbil K, et al. Tightly coupled brain activity and cerebral ATP metabolic rate. Proc Natl Acad Sci USA. 2008;105:6409–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M. Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev. 2015;48:10–21.

    Article  CAS  PubMed  Google Scholar 

  110. Ben-Shachar D. Mitochondrial dysfunction in schizophrenia: a possible linkage to dopamine. J Neurochem. 2002;83:1241–51.

    Article  CAS  PubMed  Google Scholar 

  111. Wong-Riley MT. Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci. 1989;12:94–101.

    Article  CAS  PubMed  Google Scholar 

  112. Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem. 1998;273:12753–7.

    Article  CAS  PubMed  Google Scholar 

  113. Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci. 1998;20:291–9.

    Article  CAS  PubMed  Google Scholar 

  114. Ben-Shachar D, Laifenfeld D. Mitochondria, synaptic plasticity, and schizophrenia. Int Rev Neurobiol. 2004;59:273–96.

    Article  CAS  PubMed  Google Scholar 

  115. Andreazza AC, Shao L, Wang JF, Young LT. Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry. 2010;67:360–8.

    Article  CAS  PubMed  Google Scholar 

  116. Maurer I, Zierz S, Moller H. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophrenia Res. 2001;48:125–36.

    Article  CAS  Google Scholar 

  117. Enwright Iii JF, Huo Z, Arion D, Corradi JP, Tseng G, Lewis DA. Transcriptome alterations of prefrontal cortical parvalbumin neurons in schizophrenia. Mol Psychiatry. 2018;23:1606–13.

    Article  CAS  PubMed  Google Scholar 

  118. Arion D, Corradi JP, Tang S, Datta D, Boothe F, He A, et al. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Mol Psychiatry. 2015;20:1397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arion D, Huo Z, Enwright JF, Corradi JP, Tseng G, Lewis DA. Transcriptome alterations in prefrontal pyramidal cells distinguish schizophrenia from bipolar and major depressive disorders. Biol Psychiatry. 2017;82:594–600.

  120. Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry. 2005;58:85–96.

    Article  CAS  PubMed  Google Scholar 

  121. Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E, et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18:1067–76.

    Article  CAS  PubMed  Google Scholar 

  122. Ni P, Noh H, Park GH, Shao Z, Guan Y, Park JM, et al. iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Mol Psychiatry. 2020;25:2873–88.

  123. Akkouh IA, Hribkova H, Grabiec M, Budinska E, Szabo A, Kasparek T, et al. Derivation and molecular characterization of a morphological subpopulation of human iPSC astrocytes reveal a potential role in schizophrenia and clozapine response. Schizophr Bull. 2022;48:190–98.

  124. Backer TE, Howard EA. Cognitive impairments and the prevention of homelessness: research and practice review. J Prim Prev. 2007;28:375–88.

    Article  PubMed  Google Scholar 

  125. Sheffield JM, Karcher NR, Barch DM. Cognitive deficits in psychotic disorders: a lifespan perspective. Neuropsychol Rev. 2018;28:509–33.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Seidman LJ, Mirsky AF. Evolving notions of schizophrenia as a developmental neurocognitive disorder. J Int Neuropsychological Soc. 2017;23:881–92.

    Article  Google Scholar 

  127. Yoon JH, Minzenberg MJ, Ursu S, Ryan Walter BS, Wendelken C, Ragland JD, et al. Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. Am J Psychiatry. 2008;165:1006–14.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Kozak K, Sharif-Razi M, Morozova M, Gaudette EV, Barr MS, Daskalakis ZJ, et al. Effects of short-term, high-frequency repetitive transcranial magnetic stimulation to bilateral dorsolateral prefrontal cortex on smoking behavior and cognition in patients with schizophrenia and non-psychiatric controls. Schizophr Res. 2018;197:441–3.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Kann O, Papageorgiou IE, Draguhn A. Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab. 2014;34:1270–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Mielnik CA, Binko MA, Chen Y, Funk AJ, Johansson EM, Intson K, et al. Consequences of NMDA receptor deficiency can be rescued in the adult brain. Mol Psychiatry. 2021;26:2929–42.

    Article  CAS  PubMed  Google Scholar 

  131. Leucht S, Tardy M, Komossa K, Heres S, Kissling W, Davis JM. Maintenance treatment with antipsychotic drugs for schizophrenia. Cochrane Database Syst Rev. 2012;5:CD008016.

  132. Henderson DC, Cagliero E, Copeland PM, Borba CP, Evins AE, Hayden D, et al. Glucose metabolism in patients with schizophrenia treated with atypical antipsychotic agents: a frequently sampled intravenous glucose tolerance test and minimal model analysis. Arch Gen Psychiatry. 2005;62:19–28.

    Article  CAS  PubMed  Google Scholar 

  133. Henderson DC. Weight gain with atypical antipsychotics: evidence and insights. J Clin Psychiatry. 2007;68:18–26.

    CAS  PubMed  Google Scholar 

  134. Henderson DC, Copeland PM, Borba CP, Daley TB, Nguyen DD, Cagliero E, et al. Glucose metabolism in patients with schizophrenia treated with olanzapine or quetiapine: a frequently sampled intravenous glucose tolerance test and minimal model analysis. J Clin Psychiatry. 2006;67:789–97.

    Article  CAS  PubMed  Google Scholar 

  135. Kowalchuk C, Castellani LN, Chintoh A, Remington G, Giacca A, Hahn MK. Antipsychotics and glucose metabolism: how brain and body collide. Am J Physiol Endocrinol Metab. 2019;316:E1–5.

    Article  CAS  PubMed  Google Scholar 

  136. Ren L, Zhou X, Huang X, Wang C, Li Y. The IRS/PI3K/Akt signaling pathway mediates olanzapine-induced hepatic insulin resistance in male rats. Life Sci. 2019;217:229–36.

    Article  CAS  PubMed  Google Scholar 

  137. Kowalchuk C, Kanagasundaram P, Belsham DD, Hahn MK. Antipsychotics differentially regulate insulin, energy sensing, and inflammation pathways in hypothalamic rat neurons. Psychoneuroendocrinology. 2019;104:42–8.

    Article  CAS  PubMed  Google Scholar 

  138. Harvey PD, Keefe RS. Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. Am J Psychiatry. 2001;158:176–84.

    Article  CAS  PubMed  Google Scholar 

  139. Weiss EM, Bilder RM, Fleischhacker WW. The effects of second-generation antipsychotics on cognitive functioning and psychosocial outcome in schizophrenia. Psychopharmacology. 2002;162:11–7.

    Article  CAS  PubMed  Google Scholar 

  140. Hagan JJ, Jones DN. Predicting drug efficacy for cognitive deficits in schizophrenia. Schizophr Bull. 2005;31:830–53.

    Article  PubMed  Google Scholar 

  141. Lesh TA, Tanase C, Geib BR, Niendam TA, Yoon JH, Minzenberg MJ, et al. A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiatry. 2015;72:226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Ardizzone TD, Bradley RJ, Freeman AM 3rd, Dwyer DS. Inhibition of glucose transport in PC12 cells by the atypical antipsychotic drugs risperidone and clozapine, and structural analogs of clozapine. Brain Res. 2001;923:82–90.

    Article  CAS  PubMed  Google Scholar 

  143. He M, Zhang Q, Deng C, Wang H, Lian J, Huang XF. Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats. Psychoneuroendocrinology. 2014;42:153–64.

    Article  PubMed  CAS  Google Scholar 

  144. Ikegami M, Ikeda H, Ohashi T, Ohsawa M, Ishikawa Y, Kai M, et al. Olanzapine increases hepatic glucose production through the activation of hypothalamic adenosine 5′-monophosphate-activated protein kinase. Diabetes Obes Metab. 2013;15:1128–35.

    Article  CAS  PubMed  Google Scholar 

  145. Lian J, Huang XF, Pai N, Deng C. Betahistine ameliorates olanzapine-induced weight gain through modulation of histaminergic, NPY and AMPK pathways. Psychoneuroendocrinology. 2014;48:77–86.

    Article  CAS  PubMed  Google Scholar 

  146. Martins PJ, Haas M, Obici S. Central nervous system delivery of the antipsychotic olanzapine induces hepatic insulin resistance. Diabetes. 2010;59:2418–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tanida M, Yamamoto N, Shibamoto T, Rahmouni K. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PloS ONE. 2013;8:e56660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang CS, Lam CK, Chari M, Cheung GW, Kokorovic A, Gao S, et al. Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes. 2010;59:2435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nash AI. Crosstalk between insulin and dopamine signaling: a basis for the metabolic effects of antipsychotic drugs. J Chem Neuroanat. 2017;83-84:59–68.

    Article  CAS  PubMed  Google Scholar 

  150. Caravaggio F, Borlido C, Hahn M, Feng Z, Fervaha G, Gerretsen P, et al. Reduced insulin sensitivity is related to less endogenous dopamine at D2/3 receptors in the ventral striatum of healthy nonobese humans. Int J Neuropsychopharmacol. 2015;18:pyv014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Brunerova L, Potockova J, Horacek J, Suchy J, Andel M. Central dopaminergic activity influences metabolic parameters in healthy men. Neuroendocrinology. 2013;97:132–8.

    Article  CAS  PubMed  Google Scholar 

  152. Buchsbaum MS, Haznedar MM, Aronowitz J, Brickman AM, Newmark RE, Bloom R, et al. FDG-PET in never-previously medicated psychotic adolescents treated with olanzapine or haloperidol. Schizophr Res. 2007;94:293–305.

    Article  PubMed  Google Scholar 

  153. Buchsbaum MS, Potkin SG, Siegel BV Jr, Lohr J, Katz M, Gottschalk LA, et al. Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry. 1992;49:966–74.

    Article  CAS  PubMed  Google Scholar 

  154. Buchsbaum MS, Haznedar M, Newmark RE, Chu KW, Dusi N, Entis JJ, et al. FDG-PET and MRI imaging of the effects of sertindole and haloperidol in the prefrontal lobe in schizophrenia. Schizophr Res. 2009;114:161–71.

    Article  PubMed  Google Scholar 

  155. Turkheimer FE, Selvaggi P, Mehta MA, Veronese M, Zelaya F, Dazzan P, et al. Normalizing the Abnormal: Do Antipsychotic Drugs Push the Cortex Into an Unsustainable Metabolic Envelope? Schizophr Bull. 2020;46:484–95.

  156. MacKenzie NE, Kowalchuk C, Agarwal SM, Costa-Dookhan KA, Caravaggio F, Gerretsen P, et al. Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Front Psychiatry. 2018;9:622.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Bar-Yosef T, Hussein W, Yitzhaki O, Damri O, Givon L, Marom C, et al. Mitochondrial function parameters as a tool for tailored drug treatment of an individual with psychosis: a proof of concept study. Sci Rep. 2020;10:12258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Smith U. Pioglitazone: mechanism of action. Int J Clin Pract Suppl. 2001;121:13–8.

    CAS  Google Scholar 

  159. Seto SW, Lam TY, Leung GP, Au AL, Ngai SM, Chan SW, et al. Comparison of vascular relaxation, lipolysis and glucose uptake by peroxisome proliferator-activated receptor-gamma activation in +db/+m and +db/+db mice. Eur J Pharmacol. 2007;572:40–8.

    Article  CAS  PubMed  Google Scholar 

  160. Lalloyer F, Staels B. Fibrates, glitazones, and peroxisome proliferator-activated receptors. Arterioscler Thromb Vasc Biol. 2010;30:894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kahn SE, Haffner SM, Viberti G, Herman WH, Lachin JM, Kravitz BG, et al. Rosiglitazone decreases C-reactive protein to a greater extent relative to glyburide and metformin over 4 years despite greater weight gain: observations from a Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2010;33:177–83.

    Article  CAS  PubMed  Google Scholar 

  162. Dello Russo C, Gavrilyuk V, Weinberg G, Almeida A, Bolanos JP, Palmer J, et al. Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem. 2003;278:5828–36.

    Article  CAS  PubMed  Google Scholar 

  163. Smith RC, Jin H, Li C, Bark N, Shekhar A, Dwivedi S, et al. Effects of pioglitazone on metabolic abnormalities, psychopathology, and cognitive function in schizophrenic patients treated with antipsychotic medication: a randomized double-blind study. Schizophr Res. 2013;143:18–24.

    Article  PubMed  Google Scholar 

  164. Iranpour N, Zandifar A, Farokhnia M, Goguol A, Yekehtaz H, Khodaie-Ardakani MR, et al. The effects of pioglitazone adjuvant therapy on negative symptoms of patients with chronic schizophrenia: a double-blind and placebo-controlled trial. Hum Psychopharmacol. 2016;31:103–12.

    Article  CAS  PubMed  Google Scholar 

  165. Matthews L, Berry A, Tersigni M, D’Acquisto F, Ianaro A, Ray D. Thiazolidinediones are partial agonists for the glucocorticoid receptor. Endocrinology. 2009;150:75–86.

    Article  CAS  PubMed  Google Scholar 

  166. Jeong I, Choi BH, Hahn SJ. Rosiglitazone inhibits Kv4.3 potassium channels by open-channel block and acceleration of closed-state inactivation. Br J Pharmacol. 2011;163:510–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pancani T, Phelps JT, Searcy JL, Kilgore MW, Chen KC, Porter NM, et al. Distinct modulation of voltage-gated and ligand-gated Ca2+ currents by PPAR-gamma agonists in cultured hippocampal neurons. J Neurochem. 2009;109:1800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Morrison A, Yan X, Tong C, Li J. Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice. Am J Physiol Heart Circ Physiol. 2011;301:H895–902.

    Article  CAS  PubMed  Google Scholar 

  169. Mieczkowska A, Basle MF, Chappard D, Mabilleau G. Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J Biol Chem. 2012;287:23517–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Seo JH, Lee YM, Lee JS, Kang HC, Kim HD. Efficacy and tolerability of the ketogenic diet according to lipid:nonlipid ratios-comparison of 3:1 with 4:1 diet. Epilepsia. 2007;48:801–5.

    Article  CAS  PubMed  Google Scholar 

  171. Kovacs Z, D’Agostino DP, Diamond D, Kindy MS, Rogers C, Ari C. Therapeutic potential of exogenous ketone supplement induced ketosis in the treatment of psychiatric disorders: review of current literature. Front Psychiatry. 2019;10:363.

    Article  PubMed  PubMed Central  Google Scholar 

  172. VanItallie TB, Nufert TH. Ketones: metabolism’s ugly duckling. Nutr Rev. 2003;61:327–41.

    Article  PubMed  Google Scholar 

  173. Achanta LB, Rae CD. beta-Hydroxybutyrate in the brain: one molecule, multiple mechanisms. Neurochem Res. 2017;42:35–49.

    Article  CAS  PubMed  Google Scholar 

  174. Branco AF, Ferreira A, Simoes RF, Magalhaes-Novais S, Zehowski C, Cope E, et al. Ketogenic diets: from cancer to mitochondrial diseases and beyond. Eur J Clin Investig. 2016;46:285–98.

    Article  Google Scholar 

  175. Koppel SJ, Swerdlow RH. Neuroketotherapeutics: a modern review of a century-old therapy. Neurochemistry Int. 2018;117:114–25.

    Article  CAS  Google Scholar 

  176. McCullumsmith RE. Evidence for schizophrenia as a disorder of neuroplasticity. Am J Psychiatry. 2015;172:312–3.

    Article  PubMed  Google Scholar 

  177. Kraeuter AK, van den Buuse M, Sarnyai Z. Ketogenic diet prevents impaired prepulse inhibition of startle in an acute NMDA receptor hypofunction model of schizophrenia. Schizophr Res. 2019;206:244–50.

    Article  PubMed  Google Scholar 

  178. Swerdlow NR, Light GA. Sensorimotor gating deficits in schizophrenia: Advancing our understanding of the phenotype, its neural circuitry and genetic substrates. SchizophrRes. 2018;198:1–5.

    Article  Google Scholar 

  179. Kraeuter AK, Mashavave T, Suvarna A, van den Buuse M, Sarnyai Z. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice. Psychopharmacology. 2020;237:1397–405.

  180. Kraeuter AK, Archambault N, van den Buuse M, Sarnyai Z. Ketogenic diet and olanzapine treatment alone and in combination reduce a pharmacologically-induced prepulse inhibition deficit in female mice. Schizophr Res. 2019;212:221–4.

    Article  PubMed  Google Scholar 

  181. Palmer CM, Gilbert-Jaramillo J, Westman EC. The ketogenic diet and remission of psychotic symptoms in schizophrenia: two case studies. Schizophr Res. 2019;208:439–40.

    Article  PubMed  Google Scholar 

  182. Palmer CM. Ketogenic diet in the treatment of schizoaffective disorder: two case studies. Schizophr Res. 2017;189:208–9.

    Article  PubMed  Google Scholar 

  183. Gilbert-Jaramillo J, Vargas-Pico D, Espinosa-Mendoza T, Falk S, Llanos-Fernandez K, Guerrero-Haro J, et al. The effects of the ketogenic diet on psychiatric symptomatology, weight and metabolic dysfunction in schizophrenia patients. Clin Nutr Metab. 2018;5.

  184. Bostock EC, Kirkby KC, Taylor BV. The current status of the ketogenic diet in psychiatry. Front Psychiatry. 2017;8:43.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Kraeuter AK, Phillips R, Sarnyai Z. Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry. 2020;101:109913.

    Article  CAS  PubMed  Google Scholar 

  186. Rho JM. How does the ketogenic diet induce anti-seizure effects? Neurosci Lett. 2017;637:4–10.

    Article  CAS  PubMed  Google Scholar 

  187. Wlodarczyk A, Wiglusz MS, Cubala WJ. Ketogenic diet for schizophrenia: nutritional approach to antipsychotic treatment. Med Hypotheses. 2018;118:74–7.

    Article  CAS  PubMed  Google Scholar 

  188. Moller HJ, Czobor P. Pharmacological treatment of negative symptoms in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2015;265:567–78.

    Article  PubMed  Google Scholar 

  189. Yudkoff M, Daikhin Y, Horyn O, Nissim I, Nissim I. Ketosis and brain handling of glutamate, glutamine, and GABA. Epilepsia. 2008;49:73–5.

    Article  PubMed  PubMed Central  Google Scholar 

  190. McNally MA, Hartman AL. Ketone bodies in epilepsy. J Neurochemistry. 2012;121:28–35.

    Article  CAS  Google Scholar 

  191. Sato K, Kashiwaya Y, Keon CA, Tsuchiya N, King MT, Radda GK, et al. Insulin, ketone bodies, and mitochondrial energy transduction. FASEB J. 1995;9:651–8.

    Article  CAS  PubMed  Google Scholar 

  192. O’Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr. 2017;3:32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. O’Donovan SM, Hasselfeld K, Bauer D, Simmons M, Roussos P, Haroutunian V, et al. Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry. 2015;5:e579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Bauer D, Gupta D, Harotunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophr Res. 2008;104:108–20.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Gupta DS, McCullumsmith RE, Beneyto M, Haroutunian V, Davis KL, Meador-Woodruff JH. Metabotropic glutamate receptor protein expression in the prefrontal cortex and striatum in schizophrenia. Synapse. 2005;57:123–31.

    Article  CAS  PubMed  Google Scholar 

  196. Shan D, Lucas EK, Drummond JB, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal expression of glutamate transporters in temporal lobe areas in elderly patients with schizophrenia. Schizophr Res. 2013;144:1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  197. McCullumsmith RE, O’Donovan SM, Drummond JB, Benesh FS, Simmons M, Roberts R, et al. Cell-specific abnormalities of glutamate transporters in schizophrenia: sick astrocytes and compensating relay neurons? Mol Psychiatry. 2016;21:823–30.

    Article  CAS  PubMed  Google Scholar 

  198. Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, et al. 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem. 2016;139:769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Brownlow ML, Jung SH, Moore RJ, Bechmann N, Jankord R. Nutritional ketosis affects metabolism and behavior in Sprague-Dawley rats in both control and chronic stress environments. Front Mol Neurosci. 2017;10:129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  200. Kothari R, Hall K, Brott T, Broderick J. Early stroke recognition: developing an out-of-hospital NIH Stroke Scale. Acad Emerg Med. 1997;4:986–90.

    Article  CAS  PubMed  Google Scholar 

  201. Grover S, Kumar P, Singh K, Vikram V, Budhiraja RD. Possible beneficial effect of peroxisome proliferator-activated receptor (PPAR)-alpha and gamma agonist against a rat model of oral dyskinesia. Pharmacol Biochem Behav. 2013;111:17–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIMH MH107487 and MH121102.

Author information

Authors and Affiliations

Authors

Contributions

NDH, XW, SMOD, JMJ, EAD, and REM wrote the paper. ZS, MKH, and NDH wrote the portion of the paper related to the ketogenic diet. NDH designed and made the figures and tables for the paper. SMOD, LMR, ZS, AJR, ZW, MKH, and REM provided critical feedback, major editorial feedback, and organized the contents of the paper. NDH, XW, SMOD, LMR, ZS, AJR, ZW, MKH, and REM conceptualized the contents of the paper.

Corresponding author

Correspondence to Nicholas D. Henkel.

Ethics declarations

Competing interests

MKH discloses an interest with Alkermes, for which she receives consultation fees. NDH, Xiaojun Wu, SMOD, EAD, JMJ, LMR, AJR, ZS, ZW, and REMC have neither financial nor competing interests to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henkel, N.D., Wu, X., O’Donovan, S.M. et al. Schizophrenia: a disorder of broken brain bioenergetics. Mol Psychiatry 27, 2393–2404 (2022). https://doi.org/10.1038/s41380-022-01494-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01494-x

This article is cited by

Search

Quick links