Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subset of acute leukemia, characterized by frequent activation of Notch1 or AKT signaling, where new therapeutic approaches are needed. We showed previously that cyclin-dependent kinase 6 (CDK6) is required for thymic lymphoblastic lymphoma induced by activated AKT. Here, we show CDK6 is required for initiation and maintenance of Notch-induced T-ALL. In a mouse retroviral model, hematopoietic stem/progenitor cells lacking CDK6 protein or expressing kinase-inactive (K43M) CDK6 are resistant to induction of T-ALL by activated Notch, whereas those expressing INK4-insensitive (R31C) CDK6 are permissive. Pharmacologic inhibition of CDK6 kinase induces CD25 and RUNX1 expression, cell cycle arrest and apoptosis in mouse and human T-ALL. Ablation of Cd25 in a K43M background restores Notch-induced T leukemogenesis, with disease that is resistant to CDK6 inhibitors in vivo. These data support a model whereby CDK6-mediated suppression of CD25 is required for initiation of T-ALL by activated Notch1, and CD25 induction mediates the therapeutic response to CDK6 inhibition in established T-ALL. These results both validate CDK6 as a molecular target for therapy of this subset of T-ALL and suggest that CD25 expression could serve as a biomarker for responsiveness of T-ALL to CDK4/6 inhibitor therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhao WL . Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia 2010; 24: 13–21.

    Article  CAS  PubMed  Google Scholar 

  2. Weng AP, Ferrando AA, Lee W, JPt Morris, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  3. Weerkamp F, van Dongen JJ, Staal FJ . Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20: 1197–1205.

    Article  CAS  PubMed  Google Scholar 

  4. Mansour MR, Linch DC, Foroni L, Goldstone AH, Gale RE . High incidence of Notch-1 mutations in adult patients with T-cell acute lymphoblastic leukemia. Leukemia 2006; 20: 537–539.

    Article  CAS  PubMed  Google Scholar 

  5. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reynolds C, Roderick JE, LaBelle JL, Bird G, Mathieu R, Bodaar K et al. Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia. Leukemia 2014; 28: 1819–1827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palomero T, Ferrando A . Therapeutic targeting of NOTCH1 signaling in T-cell acute lymphoblastic leukemia. Clin Lymphoma Myeloma 2009; 9: S205–S210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jotta PY, Ganazza MA, Silva A, Viana MB, da Silva MJ, Zambaldi LJ et al. Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia. Leukemia 2010; 24: 239–242.

    Article  CAS  PubMed  Google Scholar 

  9. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 2014; 46: 364–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sherr CJ, Roberts JM . Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 1995; 9: 1149–1163.

    Article  CAS  PubMed  Google Scholar 

  11. Biggs JR, Peterson LF, Zhang Y, Kraft AS, Zhang DE . AML1/RUNX1 phosphorylation by cyclin-dependent kinases regulates the degradation of AML1/RUNX1 by the anaphase-promoting complex. Mol Cell Biol 2006; 26: 7420–7429.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 2006; 9: 23–32.

    Article  CAS  PubMed  Google Scholar 

  13. Clappier E, Cuccuini W, Cayuela JM, Vecchione D, Baruchel A, Dombret H et al. Cyclin D2 dysregulation by chromosomal translocations to TCR loci in T-cell acute lymphoblastic leukemias. Leukemia 2006; 20: 82–86.

    Article  CAS  PubMed  Google Scholar 

  14. Chilosi M, Doglioni C, Yan Z, Lestani M, Menestrina F, Sorio C et al. Differential expression of cyclin-dependent kinase 6 in cortical thymocytes and T-cell lymphoblastic lymphoma/leukemia. Am J Pathol 1998; 152: 209–217.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagel S, Leich E, Quentmeier H, Meyer C, Kaufmann M, Drexler HG et al. Amplification at 7q22 targets cyclin-dependent kinase 6 in T-cell lymphoma. Leukemia 2008; 22: 387–392.

    Article  CAS  PubMed  Google Scholar 

  16. Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL et al. The requirement for cyclin D function in tumor maintenance. Cancer Cell 2012; 22: 438–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sawai CM, Freund J, Oh P, Ndiaye-Lobry D, Bretz JC, Strikoudis A et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell 2012; 22: 452–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu MG, Deshpande A, Enos M, Mao D, Hinds EA, Hu GF et al. A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res 2009; 69: 810–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu MG, Deshpande A, Schlichting N, Hinds EA, Mao C, Dose M et al. CDK6 kinase activity is required for thymocyte development. Blood 2011; 117: 6120–6131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pavletich NP . Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 1999; 287: 821–828.

    Article  CAS  PubMed  Google Scholar 

  21. Chen MJ, Yokomizo T, Zeigler BM, Dzierzak E, Speck NA . Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 2009; 457: 887–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gutierrez GM, Kong E, Sabbagh Y, Brown NE, Lee JS, Demay MB et al. Impaired bone development and increased mesenchymal progenitor cells in calvaria of RB1-/- mice. Proc Natl Acad Sci USA 2008; 105: 18402–18407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2(V617F) in mice. Blood 2012; 119: 3550–3560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aster JC, Xu L, Karnell FG, Patriub V, Pui JC, Pear WS . Essential roles for ankyrin repeat and transactivation domains in induction of T-cell leukemia by notch1. Mol Cell Biol 2000; 20: 7505–7515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Krause DS, Lazarides K, von Andrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  26. Salvesen GS . Caspases: opening the boxes and interpreting the arrows. Cell Death Differ 2002; 9: 3–5.

    Article  PubMed  Google Scholar 

  27. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M et al. Apoptosis and cancer: mutations within caspase genes. J Med Genet 2009; 46: 497–510.

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Sanda T, Look AT, Novina CD, von Boehmer H . Repression of tumor suppressor miR-451 is essential for NOTCH1-induced oncogenesis in T-ALL. J Exp Med 2011; 208: 663–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007; 446: 685–689.

    Article  CAS  PubMed  Google Scholar 

  30. Miyazaki K, Miyazaki M, Guo Y, Yamasaki N, Kanno M, Honda Z et al. The role of the basic helix-loop-helix transcription factor Dec1 in the regulatory T cells. J Immunol 2010; 185: 7330–7339.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang L, Fried FB, Guo H, Friedman AD . Cyclin-dependent kinase phosphorylation of RUNX1/AML1 on 3 sites increases transactivation potency and stimulates cell proliferation. Blood 2008; 111: 1193–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Egawa T, Tillman RE, Naoe Y, Taniuchi I, Littman DR . The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med 2007; 204: 1945–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 2002; 111: 621–633.

    Article  CAS  PubMed  Google Scholar 

  34. Tufekci O, Yandim MK, Oren H, Irken G, Baran Y . Targeting FoxM1 transcription factor in T-cell acute lymphoblastic leukemia cell line. Leuk Res 2015; 39: 342–347.

    Article  CAS  PubMed  Google Scholar 

  35. Wang JY, Jia XH, Xing HY, Li YJ, Fan WW, Li N et al. Inhibition of Forkhead box protein M1 by thiostrepton increases chemosensitivity to doxorubicin in T-cell acute lymphoblastic leukemia. Mol Med Report 2015; 12: 1457–1464.

    Article  CAS  Google Scholar 

  36. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011; 20: 620–634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 2013; 19: 6173–6182.

    Article  CAS  PubMed  Google Scholar 

  38. Dickson MA, Tap WD, Keohan ML, D'Angelo SP, Gounder MM, Antonescu CR et al. Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 2013; 31: 2024–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 2007; 204: 1813–1824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004; 3: 1427–1438.

    CAS  PubMed  Google Scholar 

  41. Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 2003; 4: 451–461.

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez-Diez E, Quereda V, Bellutti F, Prchal-Murphy M, Partida D, Eguren M et al. Cdk4 and Cdk6 cooperate in counteracting the INK4 family of inhibitors during murine leukemogenesis. Blood 2014; 124: 2380–2390.

    Article  CAS  PubMed  Google Scholar 

  43. Guo Z, Wang A, Zhang W, Levit M, Gao Q, Barberis C et al. PIM inhibitors target CD25-positive AML cells through concomitant suppression of STAT5 activation and degradation of MYC oncogene. Blood 2014; 124: 1777–1789.

    Article  CAS  PubMed  Google Scholar 

  44. Della Gatta G, Palomero T, Perez-Garcia A, Ambesi-Impiombato A, Bansal M, Carpenter ZW et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 2012; 18: 436–440.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O et al. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-theta and reactive oxygen species. Nat Med 2012; 18: 1693–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Carr JR, Kiefer MM, Park HJ, Li J, Wang Z, Fontanarosa J et al. FoxM1 regulates mammary luminal cell fate. Cell Rep 2012; 1: 715–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sperisen P, Wang SM, Soldaini E, Pla M, Rusterholz C, Bucher P et al. Mouse interleukin-2 receptor alpha gene expression. Interleukin-1 and interleukin-2 control transcription via distinct cis-acting elements. J Biol Chem 1995; 270: 10743–10753.

    Article  CAS  PubMed  Google Scholar 

  49. Bucher P, Corthesy P, Imbert J, Nabholz M . A conserved IL-2 responsive enhancer in the IL-2R alpha gene. Immunobiology 1997; 198: 136–143.

    Article  CAS  PubMed  Google Scholar 

  50. John S, Robbins CM, Leonard WJ . An IL-2 response element in the human IL-2 receptor alpha chain promoter is a composite element that binds Stat5, Elf-1, HMG-I(Y) and a GATA family protein. Embo J 1996; 15: 5627–5635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lecine P, Algarte M, Rameil P, Beadling C, Bucher P, Nabholz M et al. Elf-1 and Stat5 bind to a critical element in a new enhancer of the human interleukin-2 receptor alpha gene. Mol Cell Biol 1996; 16: 6829–6840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li N, Fassl A, Chick J, Inuzuka H, Li X, Mansour MR et al. Cyclin C is a haploinsufficient tumour suppressor. Nat Cell Biol 2014; 16: 1080–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Joshi I, Minter LM, Telfer J, Demarest RM, Capobianco AJ, Aster JC et al. Notch signaling mediates G1/S cell-cycle progression in T cells via cyclin D3 and its dependent kinases. Blood 2009; 113: 1689–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Jon Aster (Brigham and Women's Hospital, Boston, MA, USA) for MigR1-ICN retrovirus and human T-ALL cell lines, and Dr Harald von Boehmer (Dana-Farber Cancer Institute, Boston, MA, USA) for ICN-DsRed and DsRed-V retroviruses. We thank Dr Michelle Kelliher (UMass Medical School) for human T-ALL cell lines with wild-type Notch1 receptor. We thank Novartis Institutes for Biomedical Research (Cambridge, MA, USA) for LEE011. This work was supported by a V Foundation Translational Research Grant, Tufts Medical Center Research Fund, a Tufts CTSI-Catalyst Award (UL1 TR001064) and Tufts University Seed Grants to MGH; R01 CA090576 to RAV; R01 CA127392 to PWH; and R01 CA105241 and R01 NS065237 to GFH

Author contributions

NJ designed and performed the experiments, analyzed the data and interpreted the results; JS, JKH, WL, WZ, GL, NT, AP, NB, AD and CL assisted in genotyping and performed the experiments; GFH and PWH provided the guidance and reagents; RVE provided the guidance for the group and assisted in the manuscript preparation; and MGH designed and performed the experiments, interpreted the results, provided the guidance for the group and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Hu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, N., Sheng, J., Hu, J. et al. CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia. Leukemia 30, 1033–1043 (2016). https://doi.org/10.1038/leu.2015.353

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.353

This article is cited by

Search

Quick links