Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Complex molecular genetic abnormalities involving three or more genetic mutations are important prognostic factors for acute myeloid leukemia

Abstract

We conducted a comprehensive analysis of 28 recurrently mutated genes in acute myeloid leukemia (AML) in 271 patients with de novo AML. Co-mutations were frequently detected in the intermediate cytogenetic risk group, at an average of 2.76 co-mutations per patient. When assessing the prognostic impact of these co-mutations in the intermediate cytogenetic risk group, overall survival (OS) was found to be significantly shorter (P=0.0006) and cumulative incidence of relapse (CIR) significantly higher (P=0.0052) in patients with complex molecular genetic abnormalities (CMGAs) involving three or more mutations. This trend was marked even among patients aged 65 years who were also FLT3-ITD (FMS-like tyrosine kinase 3 internal tandem duplications)-negative (OS: P=0.0010; CIR: P=0.1800). Moreover, the multivariate analysis revealed that CMGA positivity was an independent prognostic factor associated with OS (P=0.0007). In stratification based on FLT3-ITD and CEBPA status and ‘simplified analysis of co-mutations’ using seven genes that featured frequently in CMGAs, CMGA positivity retained its prognostic value in transplantation-aged patients of the intermediate cytogenetic risk group (OS: P=0.0002. CIR: P<0.0001). In conclusion, CMGAs in AML were found to be strong independent adverse prognostic factors and simplified co-mutation analysis to have clinical usefulness and applicability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Estey E, Döhner H . Acute myeloid leukaemia. Lancet 2006; 368: 1894–1907.

    Article  PubMed  Google Scholar 

  2. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schlenk RF, Döhner H . Genomic applications in the clinic: use in treatment paradigm of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2013; 2013: 324–330.

    Article  PubMed  Google Scholar 

  5. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. . Blood 2010; 116: 354–365.

    Article  CAS  PubMed  Google Scholar 

  6. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  7. Pabst T, Eyholzer M, Fos J, Mueller B U . Heterogeneity within AML with CEBPA mutations; only CEBPA double mutations, but not single CEBPA mutations are associated with favourable prognosis. Br J Cancer 2009; 100: 1343–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fröhling S, Schlenk RF, Stolze I, Bihlmayr J, Benner A, Kreitmeier S et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J Clin Oncol 2004; 22: 624–633.

    Article  PubMed  Google Scholar 

  9. Wouters BJ, Löwenberg B, Erpelinck-Verschueren CA, van Putten WL, Valk PJ, Delwel R et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 2009; 113: 3088–3091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3-internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  11. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  12. Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    Article  PubMed  Google Scholar 

  13. Schnittger S, Schoch C, Kern W, Mecucci C, Tschulik C, Martelli MF et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 2005; 106: 3733–3739.

    Article  CAS  PubMed  Google Scholar 

  14. Döhner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 2005; 106: 3740–3746.

    Article  PubMed  Google Scholar 

  15. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 2006; 107: 4011–4020.

    Article  CAS  PubMed  Google Scholar 

  16. Röllig C, Bornhäuser M, Thiede C, Taube F, Kramer M, Mohr B et al. Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: evaluation of the proposed reporting system. J Clin Oncol 2011; 29: 2758–2765.

    Article  PubMed  Google Scholar 

  17. Mrózek K, Marcucci G, Nicolet D, Maharry KS, Becker H, Whitman SP et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol 2012; 30: 4515–4523.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  19. O'Donnell MR, Abboud CN, Altman J, Appelbaum FR, Arber DA, Attar E et al. Acute myeloid leukemia. J Natl Compr Canc Netw 2012; 10: 984–1021.

    Article  CAS  PubMed  Google Scholar 

  20. Thol F, Damm F, Lüdeking A, Winschel C, Wagner K, Morgan M et al. Incidence and prognostic influence of DNMT3a mutations in acute myeloid leukemia. J Clin Oncol 2011; 29: 2889–2896.

    Article  CAS  PubMed  Google Scholar 

  21. Chou WC, Chou SC, Liu CY, Chen CY, Hou HA, Kuo YY et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 2011; 118: 3803–3810.

    Article  CAS  PubMed  Google Scholar 

  22. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 2348–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boissel N, Nibourel O, Renneville A, Gardin C, Reman O, Contentin N et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol 2010; 28: 3717–3723.

    Article  CAS  PubMed  Google Scholar 

  25. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  PubMed Central  Google Scholar 

  26. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rocquain J, Gelsi-Boyer V, Adélaïde J, Murati A, Carbuccia N, Vey N et al. Alteration of cohesin genes in myeloid diseases. Am J Hematol 2010; 85: 717–719.

    Article  CAS  PubMed  Google Scholar 

  28. Thol F, Bollin R, Gehlhaar M, Walter C, Dugas M, Suchanek KJ et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 2014; 123: 914–920.

    Article  CAS  PubMed  Google Scholar 

  29. Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet 2013; 45: 1232–1237.

    Article  CAS  PubMed  Google Scholar 

  30. Kihara R, Nagata Y, Kiyoi H, Kato T, Yamamoto E, Suzuki K et al. Comprehensive analysis of genetic alterations and their prognostic impacts in adult acute myeloid leukemia patients. Leukemia 2014; 28: 1586–1595.

    Article  CAS  PubMed  Google Scholar 

  31. Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia 2013; 27: 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Patel JP, Gönen M, Figueroa ME, Fernandez H, Sun Z, Racevskis J et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012; 366: 1079–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    Article  CAS  PubMed  Google Scholar 

  34. Shih LY, Huang CF, Wu JH, Lin TL, Dunn P, Wang PN et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002; 100: 2387–2392.

    Article  CAS  PubMed  Google Scholar 

  35. Cloos J, Goemans BF, Hess CJ, van Oostveen JW, Waisfisz Q, Corthals S et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia 2006; 20: 1217–1220.

    Article  CAS  PubMed  Google Scholar 

  36. Wakita S, Yamaguchi H, Omori I, Terada K, Ueda T, Manabe E et al. Mutations of the epigenetics-modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia 2013; 27: 1044–1052.

    Article  CAS  PubMed  Google Scholar 

  37. Krönke J, Bullinger L, Teleanu V, Tschürtz F, Gaidzik VI, Kühn MW et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood 2013; 122: 100–108.

    Article  PubMed  Google Scholar 

  38. Li HY, Deng DH, Huang Y, Ye FH, Huang LL, Xiao Q et al. Favorable prognosis of biallelic CEBPA gene mutations in acute myeloid leukemia patients: a meta-analysis. Eur J Haematol 2015; 94: 439–448.

    Article  CAS  PubMed  Google Scholar 

  39. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 2001; 98: 1312–1320.

    Article  CAS  PubMed  Google Scholar 

  42. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96: 4075–4083.

    CAS  PubMed  Google Scholar 

  43. Mrozek K . Cytogenetic, molecular genetic, and clinical characteristics of acute myeloid leukemia with a complex karyotype. Semin Oncol 2008; 35: 365–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Haferlach T, Kern W, Schoch C, Schnittger S, Sauerland C, Heinecke A et al. A new prognostic score for patients with acute myeloid leukemia based on cytogenetics and early blast clearance in trials of the German AML Cooperative Group. Haematologica 2004; 89: 408–418.

    PubMed  Google Scholar 

  45. Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R et al. Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 2005; 106: 2854–2861.

    Article  CAS  PubMed  Google Scholar 

  46. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 2010; 28: 3636–3643.

    Article  CAS  PubMed  Google Scholar 

  47. Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE . The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 2010; 116: 2779–2782.

    Article  CAS  PubMed  Google Scholar 

  48. Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2011; 29: 1373–1381.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gaidzik VI, Paschka P, Späth D, Habdank M, Köhne CH, Germing U et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol 2012; 30: 1350–1357.

    Article  CAS  PubMed  Google Scholar 

  50. Tian X, Xu Y, Yin J, Tian H, Chen S, Wu D et al. TET2 gene mutation is unfavorable prognostic factor in cytogenetically normal acute myeloid leukemia patients with NPM1+ and FLT3-ITD - mutations. Int J Hematol 2014; 100: 96–104.

    Article  CAS  PubMed  Google Scholar 

  51. Krönke J, Schlenk RF, Jensen KO, Tschürtz F, Corbacioglu A, Gaidzik VI et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol 2011; 29: 2709–2716.

    Article  PubMed  Google Scholar 

  52. Kern W, Haferlach T, Schnittger S, Ludwig WD, Hiddemann W, Schoch C . Karyotype instability between diagnosis and relapse in 117 patients with acute myeloid leukemia: implications for resistance against therapy. Leukemia 2002; 16: 2084–2091.

    Article  CAS  PubMed  Google Scholar 

  53. Horiike S, Misawa S, Kaneko H, Sasai Y, Kobayashi M, Fujii H et al. Distinct genetic involvement of the TP53 gene in therapy-related leukemia and myelodysplasia with chromosomal losses of Nos 5 and/or 7 and its possible relationship to replication error phenotype. Leukemia 1999; 13: 1235–1242.

    Article  CAS  PubMed  Google Scholar 

  54. Hou HA, Kuo YY, Liu CY, Chou WC, Lee MC, Chen CY et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood 2012; 119: 559–568.

    Article  CAS  PubMed  Google Scholar 

  55. Welch JS . Subclonal architecture in acute myeloid leukemia. Hematology Education: the education program for the annual congress of the European Hematology Association. The EHA Learning Center: The Hague, The Netherlands, 2013; pp 23–29.

    Google Scholar 

  56. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371: 2477–2487.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Raghavan M, Smith LL, Lillington DM, Chaplin T, Kakkas I, Molloy G et al. Segmental uniparental disomy is a commonly acquired genetic event in relapsed acute myeloid leukemia. Blood 2008; 112: 814–821.

    Article  CAS  PubMed  Google Scholar 

  59. Yi JH, Huh J, Kim HJ, Kim SH, Kim HJ, Kim YK et al. Adverse prognostic impact of abnormal lesions detected by genome-wide single nucleotide polymorphism array-based karyotyping analysis in acute myeloid leukemia with normal karyotype. J Clin Oncol 29: 4702–4708.

    Article  PubMed  Google Scholar 

  60. Walter MJ, Payton JE, Ries RE, Shannon WD, Deshmukh H, Zhao Y et al. Acquired copy number alterations in adult acute myeloid leukemia genomes. Proc Natl Acad Sci USA 2009; 106: 12950–12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Yamaguchi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

SW and HY were the principal investigators and take primary responsibility for the paper. SW, HY, TU, KU, SK, YK, EK, KT, SG, MK, HT, KN, TF and KI recruited the patients. SW, HY, KA, TK and FK performed the laboratory work for this study. SW, HY, YF, SY, KF, TR, TH and KI analyzed the data and wrote the paper.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakita, S., Yamaguchi, H., Ueki, T. et al. Complex molecular genetic abnormalities involving three or more genetic mutations are important prognostic factors for acute myeloid leukemia. Leukemia 30, 545–554 (2016). https://doi.org/10.1038/leu.2015.288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.288

This article is cited by

Search

Quick links