Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention

Abstract

Signal transducer and activator of transcription (STAT) proteins comprise a family of transcription factors that are activated by cytokines, hormones and growth factors. The activation of STAT proteins plays a key role in the production of mature hematopoietic cells via effects on cellular proliferation, survival and lineage-specific differentiation. Emerging evidence also demonstrates frequent, constitutive activation of STATs in primary leukemia specimens. Moreover, roles for STATs in promoting leukemia development have been delineated in numerous preclinical studies. This review summarizes our current understanding of STAT protein involvement in normal hematopoiesis and leukemogenesis, as well as recent advances in the development and testing of novel STAT inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Darnell JE Jr . STATs and gene regulation. Science 1997; 277: 1630–1635.

    CAS  Google Scholar 

  2. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    CAS  Google Scholar 

  3. Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N et al. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 2003; 197: 157–168.

    CAS  Google Scholar 

  4. Steelman LS, Abram SL, Whelan J, Ludwig DE, Basecke J, Libra M et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    CAS  Google Scholar 

  5. Becker S, Groner B, Müller CW . Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 1998; 394: 145–151.

    CAS  Google Scholar 

  6. Chen X, Vinkemeier U, Zhao Y, Jeruzalmi D, Darnell JE Jr, Kuriyan J . Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 1998; 93: 827–839.

    CAS  Google Scholar 

  7. Benekli M, Baer MR, Baumann H, Wetzler M . Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101: 2940–2954.

    Article  CAS  Google Scholar 

  8. Sternberg DW, Gilliland DG . The role of signal transducer and activator of transciption factors in leukemogenesis. J Clin Oncol 2004; 22: 361–371.

    CAS  Google Scholar 

  9. Benekli M, Baumann H, Wetzler M . Targeting signal transducer and activator of transcription signaling pathway in leukemias. J Clin Oncol 2009; 27: 4422–4432.

    CAS  Google Scholar 

  10. Ilaria RL Jr . STAT isoforms: mediators of STAT specificity or leukemogenesis. Leuk Res 2001; 25: 483–484.

    CAS  Google Scholar 

  11. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr . Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol 1998; 18: 2553–2558.

    CAS  Google Scholar 

  12. Duarte RF, Frank DA . SCF and G-CSF lead to the synergistic induction of proliferation and gene expression through complementary signaling pathways. Blood 2000; 96: 3422–3430.

    CAS  Google Scholar 

  13. Chakraborty A, White SM, Schaefer TS, Ball ED, Dyer KF, Tweardy DJ . Granulocyte colony-stimulating factor activation of Stat3 alpha and Stat3 beta in immature normal and leukemic human myeloid cells. Blood 1996; 88: 2442–2449.

    CAS  Google Scholar 

  14. Schaefer TS, Sanders LK, Nathans D . Cooperative transcriptional activity of jun STAT3α, a short form of STAT3β. Proc Natl Acad Sci USA 1995; 92: 9097–9101.

    CAS  Google Scholar 

  15. Xia Z, Baer M, Block AW, Baumann H, Wetzler M . Expression of signal transducers and activators of transcription proteins in acute myeloid leukemia blasts. Cancer Res 1998; 58: 3173–3180.

    CAS  Google Scholar 

  16. Chakraborty A, Tweardy DJ . Granulocyte colony-stimulating factor activates a 72-kDa isoform of STAT3 in human neutrophils. J Leukoc Biol 1998; 64: 675.

    CAS  Google Scholar 

  17. Azam M, Lee C, Strehlow I, Schindler C . Functionally distinct isoforms of STAT5 are generated by protein processing. Immunity 1997; 6: 691–701.

    CAS  Google Scholar 

  18. Ilaria RL Jr, Van Etten RA . P210 and P190BCR/ABL induce the tyrosine phosphorylation and dna binding activity of multiple specific STAT family members. J Biol Chem 1996; 271: 31704–31710.

    CAS  Google Scholar 

  19. Vainchenker W, Constantinescu SN . JAK/STAT signaling in hematological malignancies. Oncogene 2012; 32: 1–13.

    Google Scholar 

  20. Irie-Sasaki J, Sasaki T, Matsumoto MW, Opavsky A, Cheng M, Welstead G . CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001; 409: 349–354.

    CAS  Google Scholar 

  21. ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M et al. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 2002; 22: 5662–5668.

    CAS  Google Scholar 

  22. Zhang X, Guo A, Yu J, Possemato A, Chen Y, Zheng W et al. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc Natl Acad Sci USA 2007; 104: 4060–4064.

    CAS  Google Scholar 

  23. Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB . The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci USA 2009; 106: 9345–9340.

    Google Scholar 

  24. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG et al. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 1995; 14: 2816–2826.

    CAS  Google Scholar 

  25. Chen CY, Tsay W, Tang JL, Shen HL, Lin SW, Huang SY et al. SOCS1 methylation in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer 2003; 37: 300–305.

    CAS  Google Scholar 

  26. Chim CS, Wong KY, Loong F, Srivastava G . SOCS1 and SHP1 hypermethylation in mantle cell lymphoma and follicular lymphoma: implications for epigenetic activation of the Jak/STAT pathway. Leukemia 2004; 18: 356–358.

    CAS  Google Scholar 

  27. Qiu X, Guo G, Chen K, Kashiwada M, Druker B, Rothman P et al. A requirement for SOCS-1 and SOCS-3 phosphorylation in Bcr-Abl-induced tumorigenesis. Neoplasia 2012; 14: 547–558.

    CAS  Google Scholar 

  28. Rico-Bautista E, Flores-Morales A, Fernández-Pérez L . Suppressor of cytokine signaling (SOCS) 2, a protein with multiple functions. Cytokine Growth Factor Rev 2006; 17: 431–439.

    CAS  Google Scholar 

  29. Shuai K, Liu B . Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat Rev Immunol 2005; 5: 593–605.

    CAS  Google Scholar 

  30. Liu B, Liao J, Rao X, Kushner SA, Chung CD, Change DD et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci 1998; 95: 10626–10631.

    CAS  Google Scholar 

  31. Chung CD, Liao J, Liu B, Rao X, Jay P, Perte P et al. Specific inhibition of Stat3 signal transduction by PIAS3. Science 1997; 278: 1803–1805.

    CAS  Google Scholar 

  32. Liu B, Gross M, ten Hoeve J, Shuai K . A transcriptional corepressor of Stat1 with an essential LXXLL signature motif. Proc Natl Acad Sci 2001; 98: 3203–3207.

    CAS  Google Scholar 

  33. Durbin JE, Hackenmiller R, Simon MC, Levy DE . Targeted disruption of the mouse STAT1 gene results in compromised innate immunity to viral disease. Cell 1996; 85: 443–450.

    Google Scholar 

  34. Meraz MA, White JM, Sheehan KCF, Bach EA, Rodig SJ, Dighe AS et al. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 1996; 84: 431–442.

    CAS  Google Scholar 

  35. Levy DE, Gilliland DG . Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene 2000; 19: 2505–2510.

    CAS  Google Scholar 

  36. Kaplan MH, Sun YL, Hoey T, Grusby MJ . Impaired IL-12 responses and enhanced developement of Th2 cells in Stat4-deficient mice. Nature 1996; 382: 174–177.

    CAS  Google Scholar 

  37. Thierfelder WE, Deurse JV, Yamamoto K, Tripp RA, Sarawar SR, Carson RT et al. Requirement for Stat4 in interleukin-12 mediated responses of natural killer cells. Nature 1996; 382: 171–174.

    CAS  Google Scholar 

  38. Shimoda K, van Deursen J, Sangster MY, Sarawar SR, Carson RT, Tripp RA et al. Lack of IL-4 induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996; 380: 630–633.

    CAS  Google Scholar 

  39. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S et al. Essential role of Stat6 in IL-4 signaling. Nature 1996; 380: 627–630.

    CAS  Google Scholar 

  40. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N et al. Targeted disruption of the mouse STAT3 gene leads to early embryonic lethality. Proc Natl Acad Sci 1997; 94: 3801–3804.

    CAS  Google Scholar 

  41. Jenkins BJ, Roberts AW, Najdovska M, Grail D, Ernst M . The threshold of gp130-dependent STAT3 signaling is critical for normal regulation of hematopoiesis. Blood 2005; 105: 3512–3520.

    CAS  Google Scholar 

  42. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell R, Albanese C et al. Stat3 as an Oncogene. Cell 1999; 98: 295–303.

    CAS  Google Scholar 

  43. Kiuchi N, Nakajima K, Ichiba M, Fukada T, Narimatsu M, Mizuno K et al. STAT3 is required for the gp130-mediated full activation of the c-myc gene. J Exp Med 1999; 189: 63–73.

    CAS  Google Scholar 

  44. Fornek JL, Tygrett LT, Waldschmidt TJ, Poli V, Rickert RC, Kansas GS . Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood 2006; 107: 1085–1091.

    CAS  Google Scholar 

  45. Chou W, Levy DE, Lee C . STAT3 positively regulates an early step in B-cell development. Blood 2006; 108: 3005–3011.

    CAS  Google Scholar 

  46. Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicompetent antitumor immunity. Nat Med 2005; 11: 1314–1321.

    CAS  Google Scholar 

  47. Welte T, Zhang SM, Wang T, Zhang Z, Hesslein DGT, Yin Z et al. STAT3 deletion during hematopoiesis causes Crohn's disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci USA 2003; 100: 1879–1884.

    CAS  Google Scholar 

  48. Mantel C, Messina-Graham S, Moh A, Cooper S, Hangoc G, Fu XY et al. Mouse hematopoietic cell-targeted STAT3 deletion: stem/progenitor cell defects, mitochondrial dysfunction, ROS overproduction, and a rapid aging-like phenotype. Blood 2012; 120: 2589–2599.

    CAS  Google Scholar 

  49. Smithgall TE, Briggs SD, Schreiner S, Lerner EC, Cheng H, Wilson MB . Control of myeloid differentiation and survival by Stats. Oncogene 2000; 19: 2612–2618.

    CAS  Google Scholar 

  50. Lee C, Raz R, Gimeno R, Wistinghausen B, Tekeshita K, DePinho RA et al. STAT3 is a negative regulator of granulopoiesis but is not required for G-CSF-dependent differentiation. Immunity 2002; 17: 63–72.

    CAS  Google Scholar 

  51. Shimozaki K, Nakajima K, Hirano T, Nagata S . Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. J Biol Chem 1997; 272: 25184–25189.

    CAS  Google Scholar 

  52. Minami M, Inoue M, Wei W, Takeda K, Matsumoto M, Kishimoto T et al. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc Natl Acad Sci USA 1996; 93: 3963–3966.

    CAS  Google Scholar 

  53. Nakajima K, Yamanaka Y, Nakae K, Kojima H, Ichiba M, Kiuchi N . A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J 1996; 15: 3651–3658.

    CAS  Google Scholar 

  54. Fukada T, Ohtani T, Yoshida Y, Shirogane T, Nishida K, Nakajima K et al. STAT3 orchestrates contradictory signals in cytokine-induced G1 to S cell-cycle transition. EMBO J 1998; 17: 6670–6677.

    CAS  Google Scholar 

  55. Snyder M, Huang XY, Zhang JJ . Identification of novel direct STAT3 target genes for control of growth and differentiation. J Biol Chem 2008; 283: 3791–3798.

    CAS  Google Scholar 

  56. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF . Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: A direct role for STAT5 in Bcl-X(L) induction. Cell 1999; 98: 181–191.

    CAS  Google Scholar 

  57. Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF . Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 2001; 98: 3261–3273.

    CAS  Google Scholar 

  58. Kirito K, Uchida M, Yamada M, Miura Y, Komatsu N . A novel function of Stat1 and Stat3 proteins in erythropoietin-induced erythroid differentiation of a human leukemia cell line. Blood 1998; 92: 462–471.

    CAS  Google Scholar 

  59. Ilaria RL Jr, Hawley RG, Van Etten RA . Dominant negative mutants implicate STAT5 in myeloid cell proliferation and neutrophil differentiation. Blood 1999; 93: 4154–4166.

    CAS  Google Scholar 

  60. Malin S, McManus S, Cobaleda C, Novatchkova M, Delogu A, Bouillet P et al. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 2010; 11: 171–179.

    CAS  Google Scholar 

  61. Hoelbl A, Kovacic B, Kerenyi MA, Simma O, Warsch W, Cui Y et al. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 2006; 107: 4898–4906.

    CAS  Google Scholar 

  62. Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD et al. Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci USA 2006; 103: 1000–1005.

    CAS  Google Scholar 

  63. Schepers H, van Gosliga D, Wierenga AT, Eggen BJ, Schuringa JJ, Vellenga E . STAT5 is required for long-term maintenance of normal and leukemic human stem/progenitor cells. Blood 2007; 110: 2880–2888.

    CAS  Google Scholar 

  64. Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J et al. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 1995; 269: 81–83.

    CAS  Google Scholar 

  65. Chaturvedi P, Sharma S, Reddy EP . Abrogation of interleukin-3 dependence of myeloid cells by the v-src oncogene requires SH2 and SH3 domains which specify activation of STATs. Mol Cell Biol 1997; 17: 3295–3304.

    CAS  Google Scholar 

  66. Meshinchi S, Applebaum FR . Structural and functional alterations of FLT3 in acute myeloid leukemia. Clin Cancer Res 2009; 15: 4263–4269.

    CAS  Google Scholar 

  67. Spiekermann K, Bagrintseva K, Schwab R, Schmieja K, Hiddemann W . Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res 2003; 9: 2140–2150.

    CAS  Google Scholar 

  68. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    CAS  Google Scholar 

  69. Mizuki M, Fenski R, Halfter H, Matsumura I, Schmidt R, Müller C et al. Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 2000; 96: 3907–3914.

    CAS  Google Scholar 

  70. Yoshimoto G, Miyamoto G, Jabbarzadeh-Tabrizi S, Iino T, Rocnik JL, Kikushige Y et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 2009; 114: 5034–5043.

    CAS  Google Scholar 

  71. Lacronique V, Boureux A, Valle VD, Poirel H, Quang CT, Mauchauffé M. A . TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    CAS  Google Scholar 

  72. Turner SD, Alexander DR . Fusion tyrosine kinase mediated signalling pathways in the transformation of haematopoietic cells. Leukemia 2006; 20: 572–582.

    CAS  Google Scholar 

  73. Lacronique V, Boureux A, Monni R, Dumon S, Mauchauffé M, Mayeux P et al. Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood 2000; 95: 2076–2083.

    CAS  Google Scholar 

  74. Carron C, Cormier R, Janin A, Lacronique V, Giovannini M, Daniel MT et al. TEL-JAK2 transgenic mice develop T-cell leukemia. Blood 2000; 95: 3891–3899.

    CAS  Google Scholar 

  75. Sternberg DW, Tomasson MH, Carroll M, Curley DP, Barker G, Caprio M et al. The TEL/PDGFbetaR fusion in chronic myelomonocytic leukemia signals through STAT5-dependent and STAT5-independent pathways. Blood 2001; 98: 3390–3397.

    CAS  Google Scholar 

  76. Kawasaki A, Matsumura I, Kataoka Y, Takigawa E, Nakajima K, Kanakura Y . Opposing effects of PML and PML/RAR alpha on STAT3 activity. Blood 2003; 101: 3668–3673.

    CAS  Google Scholar 

  77. Arnould C, Philippe C, Bourdon V, Gregoire MJ, Berger R, Jonveaux P . The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet 1999; 8: 1741–1749.

    CAS  Google Scholar 

  78. Dong S, Tweardy DJ . Interactions of STAT5b-RARα, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways. Blood 2002; 99: 2637–2646.

    CAS  Google Scholar 

  79. Maurer AB, Wichmann C, Gross A, Kunkel H, Heinzel T, Ruthardt M et al. The Stat5-RARα fusion protein represses transcription and differentiation through interaction with a corepressor complex. Blood 2002; 99: 2647–2652.

    CAS  Google Scholar 

  80. Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON . Unique forms of the abl tyrosine kinase distinguish Ph1-positive CML from Ph1-positive ALL. Science 1987; 235: 85–88.

    CAS  Google Scholar 

  81. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R et al. Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 1996; 89: 4244.

    Google Scholar 

  82. Frank DA, Varticovski L . BCR/abl leads to the constitutive activation of Stat proteins, and shares an epitope with tyrosine phosphorylated Stats. Leukemia 1996; 10: 1724–1730.

    CAS  Google Scholar 

  83. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hemaotpoietic cell lines transformed by Bcr-Abl. J Exp Med 1996; 183: 811–820.

    CAS  Google Scholar 

  84. Klejman A, Schreiner S, Nieborowska-Skorska M, Slupianek A, Wilson M, Smithgall TE et al. The Src family kinase Hck couples BCR/ABL to STAT5 activation in myeloid leukemia cells. EMBO J 2002; 21: 5766–5774.

    CAS  Google Scholar 

  85. Gesbert F, Griffin JD . Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 2000; 96: 2269–2276.

    CAS  Google Scholar 

  86. Gutierrez-Castellanos S, Cruz M, Rabelo L, Godínez R, Reyes-Maldonado E, Riebeling-Navarro C . Differences in BCL-X(L) expression and STAT5 phosphorylation in chronic myeloid leukaemia patients. Eur J Haematol 2004; 72: 231–238.

    CAS  Google Scholar 

  87. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000; 191: 977–984.

    CAS  Google Scholar 

  88. Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein-Barr Virus (EBV)—related lymphoma cell lines. Blood 1996; 88: 809–816.

    CAS  Google Scholar 

  89. Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL et al. JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 2006; 20: 971–978.

    CAS  Google Scholar 

  90. Redell MS, Ruiz MJ, Alonzo TA, Gerbing RB, Tweardy DJ . Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. Blood 2011; 117: 5701–5709.

    CAS  Google Scholar 

  91. Hayakawa F, Towatari M, Iida H, Wakao H, Kiyoi H, Naoe T et al. Differential constitutive activation between STAT-related proteins and MAP kinase in primary acute myelogenous leukemia. Br J Haematol 1998; 101: 521–528.

    CAS  Google Scholar 

  92. Gouilleux-Gruart V, Gouilleux F, Desaint C, Claisse JF, Capiod JC, Delobel J et al. STAT-related transcription facotrs are constitutively acivtated in peripheral blood cells from acute leukemia patients. Blood 1996; 87: 1692–1697.

    CAS  Google Scholar 

  93. Birkenkamp KU, Geugien M, Lemmink HH, Kruijer W, Vellenga E . Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 2001; 15: 1923–1931.

    CAS  Google Scholar 

  94. Benekli M, Xia Z, Donohue KA, Ford LA, Pixley LA, Baer MR et al. Constitutive activity of signal transducer and activator of transcription 3 protein in acute myeloid leukemia blasts is associated with short disease-free survival. Blood 2002; 99: 252–257.

    CAS  Google Scholar 

  95. Zhong Y, Feng J, Chen B, Cheng L, Li Y, Qian J et al. Signal transducer and activator of transcription 3 (STAT3) gene polymorphisms are associated with treatment outcomes in acute myeloid leukemia. Int J Lab Hem 2012; 34: 383–389.

    CAS  Google Scholar 

  96. Brady A, Gibson S, Rybicki L, Hsi E, Saunthararajah Y, Sekeres M et al. Expression of phosphorylated signal transducer and activator of transcription 5 is associated with an increased risk of death in acute myeloid leukemia. Eur J Haematol 2012; 89: 288–293.

    CAS  Google Scholar 

  97. Tasian S, Doral M, Borowitz M, Wood B, Chen IM, Harvey RC et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 2012; 120: 833–842.

    CAS  Google Scholar 

  98. Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X et al. STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood 2010; 115: 2852–2863.

    CAS  Google Scholar 

  99. Frank DA, Mahajan S, Ritz J . B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest 1997; 100: 3140–3148.

    CAS  Google Scholar 

  100. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sánchez A, Martín-Saavedra FM et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    CAS  Google Scholar 

  101. Liu Z, Hazan-Halevy I, Harris D, Li P, Ferrajoli A, Faderl S et al. STAT-3 Activates NF-kB in chronic lymphocytic leukemia cells. Mol Cancer Res 2011; 9: 507–515.

    CAS  Google Scholar 

  102. Donato NJ, Wu JY, Zhang L, Kantarjian H, Talpaz M . Down-regulation of interleukin-3/granulocyte-macrophage colony-stimulating factor receptor beta-chain in BCR-ABL(+) human leukemic cells: association with loss of cytokine-mediated Stat-5 activation and protection from apoptosis after BCR-ABL inhibition. Blood 2001; 97: 2846–2853.

    CAS  Google Scholar 

  103. Walz C, Ahmed W, Lazarides K, Betancur M, Patel N, Hennighausen L et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and JAK2V617F mice. Blood 2012; 119: 3550–3560.

    CAS  Google Scholar 

  104. Koskela HL, Eldfors S, Ellonen P, Adrichem AJv, Kuusanmaki H, Andersson EI et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 2012; 366: 1905–1913.

    CAS  Google Scholar 

  105. Jerez A, Clemente M, Makishima H, Kiskela H, LeBlanc F, Ng KP et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood 2012; 120: 3048–3057.

    CAS  Google Scholar 

  106. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107: 351–362.

    CAS  Google Scholar 

  107. Ohgami RS, Ma L, Merker JD, Martinez B, Zehnder JL, Arber DA . STAT3 mutations are frequent in CD30+ T-cell lymphomas and T-cell large granular lymphocytic leukemia. Leukemia 2013; 27: 2244–2247.

    CAS  Google Scholar 

  108. Rajala HL, Eldfors S, Kuusanmaki H, van Adrichem AJ, Olson T, Lagstrom S et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 2013; 121: 4541–4550.

    CAS  Google Scholar 

  109. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997; 90: 4947–4952.

    CAS  Google Scholar 

  110. Fei F, Stoddart S, Muschen M, Kim YM, Groffen J, Heisterkamp N . Development of resistance to dasatinib in Bcr/Abl-positive acute lymphoblastic leukemia. Leukemia 2010; 24: 813–820.

    CAS  Google Scholar 

  111. Gorre M, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    CAS  Google Scholar 

  112. Warsch W, Killmann K, Eckelhart E, Fajmann S, Cerny-Reiterer S, Hölbl A et al. High STAT5 levels mediate imatinib resistance and indicate disease progression in chronic myeloid leukemia. Blood 2011; 117: 3409–3420.

    CAS  Google Scholar 

  113. Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA . Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther 2008; 7: 3169–3175.

    CAS  Google Scholar 

  114. Nelson E, Walker S, Weisberg E, Bar-Natan M, Barrett R, Gashin LB et al. The STAT5 inhibitor pimozide decreased survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 2011; 117: 3421–3429.

    CAS  Google Scholar 

  115. Swords R, Freeman C, Giles F . Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia 2012; 26: 2176–2185.

    CAS  Google Scholar 

  116. Nelson E, Walker S, Xiang M, Weisber E, Bar-Natan M, Barrett R et al. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations. Genes Cancer 2012; 3: 503–511.

    CAS  Google Scholar 

  117. Faderl S, Ferrajoli A, Harris D, Van Q, Kantarjian HM, Estrov Z . Atiprimod blocks phosphorylation of JAK-STAT and inhibits proliferation of acute myeloid leukemia (AML) cells. Leuk Res 2007; 31: 91–95.

    CAS  Google Scholar 

  118. Ferrajoli A, Faderl S, Van Q, Koch P, Harris D, Liu Z et al. WP1066 disrupts Janus kinase-2 and induces caspase-dependent apoptosis in acute myelogenous leukemia cells. Cancer Res 2007; 67: 11291–11299.

    CAS  Google Scholar 

  119. Faderl S, Ferrajoli A, Harris D, Van Q, Priebe W, Estrov Z . WP-1034, a novel JAK-STAT inhibitor, with proapoptotic and antileukemic activity in acute myeloid leukemia (AML). Anticancer Res 2005; 25: 1841–1850.

    CAS  Google Scholar 

  120. Eghtedar A, Verstovsek S, Estrov Z, Burger J, Cortes J, Bivins C et al. Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. Blood 2012; 119: 4614–4618.

    CAS  Google Scholar 

  121. Ikezoe T, Yang J, Nishioka C, Kojima S, Takeuchi A, Koeffler P et al. Inhibition of signal transducer and activator of transcription 5 by the inhibitor of janus kinases stimulates dormant human leukemia CD34+/CD38− cells and sensitizes them to antileukemia agents. Int J Cancer 2011; 128: 2317–2325.

    CAS  Google Scholar 

  122. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci 2007; 104: 7391–7396.

    CAS  Google Scholar 

  123. Song H, Wang R, Wang S, Lin J . A low-molecular weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci 2005; 102: 4700–4705.

    CAS  Google Scholar 

  124. Schust J, Sperl B, Hollis A, Mayer TU, Berg T . Stattic: a small-molecule inhibitor of Stat3 activation and dimerization. Chem Biol 2006; 13: 1235–1242.

    CAS  Google Scholar 

  125. Zhang X, Sun Y, Pireddu R, Yang H, Urlam MK, Lawrence HR et al. A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation. Cancer Res 2013; 73: 1922–1933.

    CAS  Google Scholar 

  126. Kaymaz B, Selvi N, Gokbulut A, Aktan C, Gündüz C, Saydam G et al. Suppression of STAT5A and STAT5B chronic myeloid leukemia cells via siRNA and antisense-oligonucleotide applications with the induction of apoptosis. Am J Blood Res 2013; 3: 58–70.

    CAS  Google Scholar 

  127. Lee SO, Lou W, Qureshi KM, Mehraein-Ghomi F, Trump DL, Gao AC . RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate 2004; 60: 303–309.

    CAS  Google Scholar 

  128. Li H, Huang C, Huang K, Wu W, Jiang T, Cao J et al. STAT3 knockdown reduces pancreatic cancer cell invasiveness and matrix metalloproteinase-7 expression in nude mice. PLoS One 2011; 6: e25941.

    CAS  Google Scholar 

  129. Shahzad M, Mangala LS, Han HD, Lu C, Bottsford-Miller J, Nishimura M et al. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia 2011; 13: 309–319.

    CAS  Google Scholar 

  130. Verma NK, Davies AM, Long A, Kelleher D, Volkov Y . STAT3 knockdown by siRNA induces apoptosis in human cutaneous T-cell lymphoma line Hut78 via downregulation of Bcl-xL. Cell Mol Biol Lett 2010; 15: 342–355.

    CAS  Google Scholar 

  131. Zhang Q, Hossain DMS, Nechaev S, Kozlowska A, Zhang W, Liu Y et al. TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood 2013; 121: 1304–1315.

    CAS  Google Scholar 

  132. Leong P, Andrews A, Johnson DE, Dyer K, Xi S, Mai JC et al. Targeted inhibition of STAT3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc Natl Acad Sci 2003; 100: 4138–4143.

    CAS  Google Scholar 

  133. Sen M, Thomas S, Kim S, Yeh J, Ferris RL, Johnson JT . First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov 2012; 2: 694–705.

    CAS  Google Scholar 

  134. Wang X, Zeng J, Shi M, Zhao S, Bai W, Cao W et al. Targeted blockage of signal transducer and activator of transcription 5 signaling pathway with decoy oligdeoxynucleotides suppresses leukemic K562 cell growth. DNA Cell Biol 2011; 30: 71–78.

    Google Scholar 

  135. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 2005; 272: 2258–2262.

    Google Scholar 

  136. Neviani P, Santhana R, Oaks JJ, Eiring AM, Notari M, Blaser BW et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest 2007; 117: 2408–2421.

    CAS  Google Scholar 

  137. Feschenki MS, Stevenson E, Nairn AC, Sweadner KJ . A novel cAMP-stimulated pathway in protein phosphatase 2A activation. J Pharmacol Exp Ther 2002; 302: 111–118.

    Google Scholar 

  138. Hansen G, Hercus TR, McClure BJ, Stomski FC, Dottore M, Powell J . The structure of the GM-CSF receptor complex reveals a distinct mode of cytokine receptor activation. Cell 2008; 134: 496–507.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01 CA137260 to DEJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D E Johnson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorritie, K., McCubrey, J. & Johnson, D. STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 28, 248–257 (2014). https://doi.org/10.1038/leu.2013.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.192

Keywords

This article is cited by

Search

Quick links