Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

The miR-1792 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes

Abstract

Chronic lymphocytic leukemia (CLL) cells from clinically aggressive cases have a greater capacity to respond to external microenvironmental stimuli, including those transduced through Toll-like-receptor-9 (TLR9). Concomitant microRNA and gene expression profiling in purified CLL cells (n=17) expressing either unmutated (UM) or mutated (M) IGHV genes selected microRNAs from the miR-1792 family as significantly upregulated and in part responsible for modifications in the gene expression profile of UM CLL cells stimulated with the TLR9 agonist CpG. Notably, the stable and sustained upregulation of miR-1792 microRNAs by CpG was preceded by a transient induction of the proto-oncogene MYC. The enforced expression of miR-17, a major member from this family, reduced the expression of the tumor suppressor genes E2F5, TP53INP1, TRIM8 and ZBTB4, and protected cells from serum-free-induced apoptosis (P0.05). Consistently, transfection with miR-1792 family antagomiRs reduced Bromo-deoxy-uridine incorporation in CpG-stimulated UM CLL cells. Finally, miR-17 expression levels, evaluated in 83 CLL samples, were significantly higher in UM (P=0.03) and ZAP-70high (P=0.02) cases. Altogether, these data reveal a role for microRNAs of the miR-1792 family in regulating pro-survival and growth-promoting responses of CLL cells to TLR9 triggering. Overall, targeting of this pathway may represent a novel therapeutic option for management of aggressive CLL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Borche L, Lim A, Binet JL, Dighiero G . Evidence that chronic lymphocytic leukemia B lymphocytes are frequently committed to production of natural autoantibodies. Blood 1990; 76: 562–569.

    CAS  PubMed  Google Scholar 

  3. Sthoeger ZM, Wakai M, Tse DB, Vinciguerra VP, Allen SL, Budman DR et al. Production of autoantibodies by CD5-expressing B lymphocytes from patients with chronic lymphocytic leukemia. J Exp Med 1989; 169: 255–268.

    Article  CAS  Google Scholar 

  4. Coscia M, Pantaleoni F, Riganti C, Vitale C, Rigoni M, Peola S et al. IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia 2011; 25: 828–837.

    Article  CAS  Google Scholar 

  5. Palacios F, Moreno P, Morande P, Abreu C, Correa A, Porro V et al. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease. Blood 2010; 115: 4488–4496.

    Article  CAS  Google Scholar 

  6. Barton GM, Kagan JC . A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat Rev Immunol 2009; 9: 535–542.

    Article  CAS  Google Scholar 

  7. Clark MR, Tanaka A, Powers SE, Veselits M . Receptors, subcellular compartments and the regulation of peripheral B cell responses: the illuminating state of anergy. Mol Immunol 2011; 48: 1281–1286.

    Article  CAS  Google Scholar 

  8. Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P et al. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia 2007; 21: 110–120.

    Article  CAS  Google Scholar 

  9. Tarnani M, Laurenti L, Longo PG, Piccirillo N, Gobessi S, Mannocci A et al. The proliferative response to CpG-ODN stimulation predicts PFS, TTT and OS in patients with chronic lymphocytic leukemia. Leuk Res 2010; 34: 1189–1194.

    Article  CAS  Google Scholar 

  10. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  11. Mattick JS . The genetic signatures of noncoding RNAs. PLoS Genet 2009; 5: e1000459.

    Article  Google Scholar 

  12. Calin GA, Ferracin M, Cimmino A, Di LG, Shimizu M, Wojcik SE et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  Google Scholar 

  13. Zenz T, Mohr J, Eldering E, Kater AP, Buhler A, Kienle D et al. miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood 2009; 113: 3801–3808.

    Article  CAS  Google Scholar 

  14. Bomben R, Dal-Bo M, Benedetti D, Capello D, Forconi F, Marconi D et al. Expression of mutated IGHV3-23 genes in chronic lymphocytic leukemia identifies a disease subset with peculiar clinical and biological features. Clin Cancer Res 2010; 16: 620–628.

    Article  CAS  Google Scholar 

  15. Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 2008; 111: 865–873.

    Article  CAS  Google Scholar 

  16. Decker T, Schneller F, Kronschnabl M, Dechow T, Lipford GB, Wagner H et al. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype. Exp Hematol 2000; 28: 558–568.

    Article  CAS  Google Scholar 

  17. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  Google Scholar 

  18. Draghici S, Khatri P, Martins RP, Ostermeier GC, Krawetz SA . Global functional profiling of gene expression. Genomics 2003; 81: 98–104.

    Article  CAS  Google Scholar 

  19. Volinia S, Visone R, Galasso M, Rossi E, Croce CM . Identification of microRNA activity by Targets’ Reverse EXpression. Bioinformatics 2010; 26: 91–97.

    Article  CAS  Google Scholar 

  20. Tromp JM, Tonino SH, Elias JA, Jaspers A, Luijks DM, Kater AP et al. Dichotomy in NF-kappaB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene 2010; 29: 5071–5082.

    Article  CAS  Google Scholar 

  21. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008; 132: 875–886.

    Article  CAS  Google Scholar 

  22. Lee Y, Jeon K, Lee JT, Kim S, Kim VN . MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002; 21: 4663–4670.

    Article  CAS  Google Scholar 

  23. Okumura F, Matsunaga Y, Katayama Y, Nakayama KI, Hatakeyama S . TRIM8 modulates STAT3 activity through negative regulation of PIAS3. J Cell Sci 2010; 123: 2238–2245.

    Article  CAS  Google Scholar 

  24. Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell 2000; 6: 729–735.

    Article  CAS  Google Scholar 

  25. Weber A, Marquardt J, Elzi D, Forster N, Starke S, Glaum A et al. Zbtb4 represses transcription of P21CIP1 and controls the cellular response to p53 activation. EMBO J 2008; 27: 1563–1574.

    Article  CAS  Google Scholar 

  26. Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y et al. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell 2001; 8: 85–94.

    Article  CAS  Google Scholar 

  27. Chi SW, Zang JB, Mele A, Darnell RB . Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460: 479–486.

    Article  CAS  Google Scholar 

  28. Emmrich S, Putzer BM . Checks and balances: E2F-microRNA crosstalk in cancer control. Cell Cycle 2010; 9: 2555–2567.

    Article  CAS  Google Scholar 

  29. Kim K, Chadalapaka G, Lee SO, Yamada D, Sastre-Garau X, Defossez PA et al. Identification of oncogenic microRNA-17-92/ZBTB4/specificity protein axis in breast cancer. Oncogene 2012; 31: 1034–1044.

    Article  CAS  Google Scholar 

  30. Kurisetty V, Kovacs K, Luongo T, Erchan J . hsa-miR-20a promotes tumorigenesis in ccRCC cancer cell lines [abstract]. Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research 2011, Orlando, FL, USA.

    Google Scholar 

  31. Tan LP, Seinen E, Duns G, de JD, Sibon OC, Poppema S et al. A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 2009; 37: e137.

    Article  Google Scholar 

  32. Trompeter HI, Abbad H, Iwaniuk KM, Hafner M, Renwick N, Tuschl T et al. MicroRNAs mir-17, mir-20a, and mir-106b act in concert to modulate E2F activity on cell cycle arrest during neuronal lineage differentiation of USSC. PLoS One 2011; 6: e16138.

    Article  CAS  Google Scholar 

  33. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ et al. miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 2008; 105: 2889–2894.

    Article  CAS  Google Scholar 

  34. Yeung ML, Yasunaga J, Bennasser Y, Dusetti N, Harris D, Ahmad N et al. Roles for microRNAs, miR-93 and miR-130b, and tumor protein 53-induced nuclear protein 1 tumor suppressor in cell growth dysregulation by human T-cell lymphotrophic virus 1. Cancer Res 2008; 68: 8976–8985.

    Article  CAS  Google Scholar 

  35. Li C, Kim SW, Rai D, Bolla AR, Adhvaryu S, Kinney MC et al. Copy number abnormalities, MYC activity, and the genetic fingerprint of normal B cells mechanistically define the microRNA profile of diffuse large B-cell lymphoma. Blood 2009; 113: 6681–6690.

    Article  CAS  Google Scholar 

  36. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 2008; 40: 43–50.

    Article  CAS  Google Scholar 

  37. O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT . c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005; 435: 839–843.

    Article  Google Scholar 

  38. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  Google Scholar 

  39. Onnis A, De FG, Antonicelli G, Onorati M, Bellan C, Sherman O et al. Alteration of microRNAs regulated by c-Myc in Burkitt lymphoma. PLoS One 2010; 5: pii: e12960.

    Article  Google Scholar 

  40. Tomic J, Lichty B, Spaner DE . Aberrant interferon-signaling is associated with aggressive chronic lymphocytic leukemia. Blood 2011; 117: 2668–2680.

    Article  CAS  Google Scholar 

  41. Plander M, Seegers S, Ugocsai P, Ermeier-Daucher S, Ivanyi J, Schmitz G et al. Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles. Leukemia 2009; 23: 2118–2128.

    Article  CAS  Google Scholar 

  42. Bernasconi NL, Onai N, Lanzavecchia A . A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003; 101: 4500–4504.

    Article  CAS  Google Scholar 

  43. Jahrsdorfer B, Wooldridge JE, Blackwell SE, Taylor CM, Griffith TS, Link BK et al. Immunostimulatory oligodeoxynucleotides induce apoptosis of B cell chronic lymphocytic leukemia cells. J Leukoc Biol 2005; 77: 378–387.

    Article  Google Scholar 

  44. Cloonan N, Brown MK, Steptoe AL, Wani S, Chan WL, Forrest AR et al. The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biol 2008; 9: R127.

    Article  Google Scholar 

  45. Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 2007; 109: 4399–4405.

    Article  CAS  Google Scholar 

  46. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 2005; 65: 9628–9632.

    Article  CAS  Google Scholar 

  47. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  48. Fujimoto M, Naka T . SOCS1, a negative regulator of cytokine signals and TLR responses, in human liver diseases. Gastroenterol Res Pract 2010; 2010: pii: 470468.

    Article  Google Scholar 

  49. Cui JW, Li YJ, Sarkar A, Brown J, Tan YH, Premyslova M et al. Retroviral insertional activation of the Fli-3 locus in erythroleukemias encoding a cluster of microRNAs that convert Epo-induced differentiation to proliferation. Blood 2007; 110: 2631–2640.

    Article  CAS  Google Scholar 

  50. Frenquelli M, Muzio M, Scielzo C, Fazi C, Scarfo L, Rossi C et al. MicroRNA and proliferation control in chronic lymphocytic leukemia: functional relationship between miR-221/222 cluster and p27. Blood 2010; 115: 3949–3959.

    Article  CAS  Google Scholar 

  51. Allsup DJ, Kamiguti AS, Lin K, Sherrington PD, Matrai Z, Slupsky JR et al. B-cell receptor translocation to lipid rafts and associated signaling differ between prognostically important subgroups of chronic lymphocytic leukemia. Cancer Res 2005; 65: 7328–7337.

    Article  CAS  Google Scholar 

  52. Chen L, Apgar J, Huynh L, Dicker F, Giago-McGahan T, Rassenti L et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 2005; 105: 2036–2041.

    Article  CAS  Google Scholar 

  53. Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG . ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 2007; 109: 2032–2039.

    Article  CAS  Google Scholar 

  54. Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK . Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status. Blood 2007; 109: 4424–4431.

    Article  CAS  Google Scholar 

  55. Albihn A, Johnsen JI, Henriksson MA . MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res 2010; 107: 163–224.

    Article  CAS  Google Scholar 

  56. Lee SH, Hu LL, Gonzalez-Navajas J, Seo GS, Shen C, Brick J et al. ERK activation drives intestinal tumorigenesis in Apc(min/+) mice. Nat Med 2010; 16: 665–670.

    Article  CAS  Google Scholar 

  57. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  Google Scholar 

  58. Catera R, Silverman GJ, Hatzi K, Seiler T, Didier S, Zhang L et al. Chronic lymphocytic leukemia cells recognize conserved epitopes associated with apoptosis and oxidation. Mol Med 2008; 14: 665–674.

    Article  CAS  Google Scholar 

  59. Rosen A, Murray F, Evaldsson C, Rosenquist R . Antigens in chronic lymphocytic leukemia—implications for cell origin and leukemogenesis. Semin Cancer Biol 2010; 20: 400–409.

    Article  CAS  Google Scholar 

  60. Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011; 117: 563–574.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by: Ministero della Salute, Ricerca Finalizzata I.R.C.C.S., ‘Alleanza Contro il Cancro’; Rete Nazionale Bio-Informatica Oncologica/RN-BIO; Progetto Giovani Ricercatori n. GR-2009-1475467, Rome, Italy; Progetto Giovani Ricercatori n. GR-2008-1138053, Rome, Italy; Fondazione Internazionale di Ricerca in Medicina Sperimentale (FIRMS); Associazione Italiana contro le Leucemie, linfomi e mielomi (AIL), Venezia Section, Pramaggiore Group, Italy; Ricerca Scientifica Applicata, Regione Friuli Venezia Giulia (‘Linfonet’ Project), Trieste, Italy; the Associazione Italiana Ricerca Cancro (AIRC, Investigator Grant IG-8701, IG-5917 and MFAG-10327), Milan, Italy; ‘5 × 1000 Intramural Program’, Centro di Riferimento Oncologico, Aviano, Italy; and The Leukemia & Lymphoma Society (grant no. R6170-10), White Plains, NY.

Author contributions

RB performed the research and wrote the manuscript; SG and MDB performed the research and contributed to the writing of the manuscript; ET, AZ and DB performed the research; SV and DM analyzed the miRNA and gene expression data; DR, GDP, GG and LL provided patients’ data; and DGE and VG designed the study and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Gattei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bomben, R., Gobessi, S., Dal Bo, M. et al. The miR-1792 family regulates the response to Toll-like receptor 9 triggering of CLL cells with unmutated IGHV genes. Leukemia 26, 1584–1593 (2012). https://doi.org/10.1038/leu.2012.44

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.44

Keywords

This article is cited by

Search

Quick links