Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Anti-inflammatory actions of endogenous and exogenous interleukin-10 versus glucocorticoids on macrophage functions of the newly born

Abstract

Objective:

To determine whether specific macrophage immune functions of the newly born are insensitive to the actions of therapeutic levels of dexamethasone (DEX), previously measured in infants with bronchopulmonary dysplasia (BPD), compared with betamethasone (BETA) and exogenous or endogenous interleukin-10 (IL-10).

Study design:

Macrophages were differentiated from cord blood monocytes (N=18). A serial dose–response (around 10−8M), in vitro study was used to examine the effect of DEX, BETA and IL-10, on proinflammatory (PI) cytokine release, phagocytosis and respiratory burst.

Result:

Exogenous IL-10 (10−8M) significantly (P<0.05) inhibited the endotoxin-stimulated release of IL-6, IL-8 and tumor necrosis factor by 63 to 82% with no significant effect by DEX and BETA. There was no inhibition by these three agents at 10−8M on phagocytosis and respiratory burst. Inhibition of endogenous IL-10 with a monoclonal antibody significantly increased endotoxin-stimulated cytokine release by at least fourfold.

Conclusion:

Macrophages were relatively insensitive to therapeutic levels of DEX and BETA with regard to PI cytokine release. This study provides rationale for translational and preclinical research using airway instillation of IL-10 for the treatment of BPD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Stoll BJ, Hansen NI, Bell EF, Shankaran S, Laptook AR, Walsh MC et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 2010; 126 (3): 443–456.

    Article  Google Scholar 

  2. Jobe AH . The new bronchopulmonary dysplasia. Curr Opin Pediatr 2011; 23 (2): 167–172.

    Article  Google Scholar 

  3. Speer CP . Inflammation and bronchopulmonary dysplasia: a continuing story. Semin Fetal Neonatal Med 2006; 11 (5): 354–362.

    Article  Google Scholar 

  4. Mokres LM, Parai K, Hilgendorff A, Ertsey R, Alvira CM, Rabinovitch M et al. Prolonged mechanical ventilation with air induces apoptosis and causes failure of alveolar septation and angiogenesis in lungs of newborn mice. Am J Physiol Lung Cell Mol Physiol 2010; 298 (1): L23–L35.

    Article  CAS  Google Scholar 

  5. Mourani PM, Abman SH . Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr 2013; 25 (3): 329–337.

    Article  CAS  Google Scholar 

  6. Halliday HL, Ehrenkranz RA, Doyle LW . Late (&gt;7 days) postnatal corticosteroids for chronic lung disease in preterm infants. Cochrane Database Syst Rev 2009; (1): Cd001145.

  7. Onland W, Offringa M, De Jaegere AP, van Kaam AH . Finding the optimal postnatal dexamethasone regimen for preterm infants at risk of bronchopulmonary dysplasia: a systematic review of placebo-controlled trials. Pediatrics 2009; 123 (1): 367–377.

    Article  Google Scholar 

  8. O'Reilly M, Thebaud B . The promise of stem cells in bronchopulmonary dysplasia. Semin Perinatol 2013; 37 (2): 79–84.

    Article  Google Scholar 

  9. Ghanta S, Leeman KT, Christou H . An update on pharmacologic approaches to bronchopulmonary dysplasia. Semin Perinatol 2013; 37 (2): 115–123.

    Article  Google Scholar 

  10. Jackson JC, Chi EY, Wilson CB, Truog WE, Teh EC, Hodson WA . Sequence of inflammatory cell migration into lung during recovery from hyaline membrane disease in premature newborn monkeys. Am Rev Respir Dis 1987; 135 (4): 937–940.

    Article  CAS  Google Scholar 

  11. Kwong KY, Jones CA, Cayabyab R, Lecart C, Khuu N, Rhandhawa I et al. The effects of IL-10 on proinflammatory cytokine expression (IL-1beta and IL-8) in hyaline membrane disease (HMD). Clin Immunol Immunopathol 1998; 88 (1): 105–113.

    Article  CAS  Google Scholar 

  12. Merritt TA, Cochrane CG, Holcomb K, Bohl B, Hallman M, Strayer D et al. Elastase and alpha 1-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. Role of inflammation in the pathogenesis of bronchopulmonary dysplasia. J Clin Invest 1983; 72 (2): 656–666.

    Article  CAS  Google Scholar 

  13. Munshi UK, Niu JO, Siddiq MM, Parton LA . Elevation of interleukin-8 and interleukin-6 precedes the influx of neutrophils in tracheal aspirates from preterm infants who develop bronchopulmonary dysplasia. Pediatr Pulmonol 1997; 24 (5): 331–336.

    Article  CAS  Google Scholar 

  14. Schibler KR . The Mononuclear Phagocyte System In: Polin RA FW, Abman SH (ed) Fetal and Neonatal Physiology vol. 2. Saunders: Philadelphia p 153 2011.

    Google Scholar 

  15. Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ . Increase in interleukin (IL)-1 beta and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr Res 1996; 40 (2): 250–256.

    Article  CAS  Google Scholar 

  16. Ambalavanan N, Carlo WA, D'Angio CT, McDonald SA, Das A, Schendel D et al. Cytokines associated with bronchopulmonary dysplasia or death in extremely low birth weight infants. Pediatrics 2009; 123 (4): 1132–1141.

    Article  Google Scholar 

  17. Jones CA, Cayabyab RG, Kwong KY, Stotts C, Wong B, Hamdan H et al. Undetectable interleukin (IL)-10 and persistent IL-8 expression early in hyaline membrane disease: a possible developmental basis for the predisposition to chronic lung inflammation in preterm newborns. Pediatr Res 1996; 39 (6): 966–975.

    Article  CAS  Google Scholar 

  18. Oei J, Lui K, Wang H, Henry R . Decreased interleukin-10 in tracheal aspirates from preterm infants developing chronic lung disease. Acta Paediatr 2002; 91 (11): 1194–1199.

    Article  CAS  Google Scholar 

  19. Chusid LA, Pereira-Argenziano L, Miskolci V, Vancurova I, Davidson D . Transcriptional control of cytokine release from monocytes of the newborn: effects of endogenous and exogenous interleukin-10 versus dexamethasone. Neonatology 2010; 97 (2): 108–116.

    Article  CAS  Google Scholar 

  20. Davidson D, Patel H, Degoy A, Gershkovich I, Vancurova I, Miskolci V . Differential effect of ex-ogenous interleukin-10 versus glucocorticoids on gene expression and pro-inflammatory cytokine release by polymorphonuclear leukocytes and monocytes of the newly born. Am J Transl Res 2013; 5 (1): 103–115.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Akagawa KS . Functional heterogeneity of colony-stimulating factor-induced human monocyte-derived macrophages. Int J Hematol 2002; 76 (1): 27–34.

    Article  CAS  Google Scholar 

  22. Lugo RA, Nahata MC, Menke JA, McClead RE Jr. . Pharmacokinetics of dexamethasone in premature neonates. Eur J Clin Pharmacol 1996; 49 (6): 477–483.

    Article  CAS  Google Scholar 

  23. Schild PN, Charles BG . Determination of dexamethasone in plasma of premature neonates using high-performance liquid chromatography. J Chromatogr B Biomed Appl 1994; 658 (1): 189–192.

    Article  CAS  Google Scholar 

  24. Davidson D, Zaytseva A, Miskolci V, Castro-Alcaraz S, Vancurova I, Patel H . Gene expression profile of endotoxin-stimulated leukocytes of the term new born: control of cytokine gene expression by interleukin-10. PLoS One 2013; 8 (1): e53641.

    Article  CAS  Google Scholar 

  25. Barnes PJ, Adcock IM . Glucocorticoid resistance in inflammatory diseases. Lancet 2009; 373 (9678): 1905–1917.

    Article  CAS  Google Scholar 

  26. Bhavsar P, Hew M, Khorasani N, Torrego A, Barnes PJ, Adcock I et al. Relative corticosteroid insensitivity of alveolar macrophages in severe asthma compared with non-severe asthma. Thorax 2008; 63 (9): 784–790.

    Article  CAS  Google Scholar 

  27. Mercado N, To Y, Ito K, Barnes PJ . Nortriptyline reverses corticosteroid insensitivity by inhibition of phosphoinositide-3-kinase-δ. J Pharmacol Exp Ther 2011; 337 (2): 465–470.

    Article  CAS  Google Scholar 

  28. Culpitt SV, Rogers DF, Shah P, De Matos C, Russell RE, Donnelly LE et al. Impaired inhibition by dexamethasone of cytokine release by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2003; 167 (1): 24–31.

    Article  Google Scholar 

  29. Buchwald UK, Geerdes-Fenge HF, Vockler J, Ziege S, Lode H . Interleukin-10: effects on phagocytosis and adhesion molecule expression of granulocytes and monocytes in a comparison with prednisolone. Eur J Med Res 1999; 4 (3): 85–94.

    CAS  PubMed  Google Scholar 

  30. Shi WL, Ma Q, Zhang LD, Huang JL, Zhou J, Liu L et al. Corticosterone rapidly promotes respiratory burst of mouse peritoneal macrophages. Chin Med J (Engl) 2011; 124 (19): 3127–3132.

    CAS  Google Scholar 

  31. Romero R, Roslansky P, Oyarzun E, Wan M, Emamian M, Novitsky TJ et al. Labor and infection. II. Bacterial endotoxin in amniotic fluid and its relationship to the onset of preterm labor. Am J Obstet Gynecol 1988; 158 (5): 1044–1049.

    Article  CAS  Google Scholar 

  32. Herzyk DJ, Allen JN, Marsh CB, Wewers MD . Macrophage and monocyte IL-1 beta regulation differs at multiple sites. Messenger RNA expression, translation, and post-translational processing. J Immunol 1992; 149 (9): 3052–3058.

    CAS  PubMed  Google Scholar 

  33. Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL, Perez JA et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med 2000; 342 (7): 469–474.

    Article  CAS  Google Scholar 

  34. Halliday HL, Ehrenkranz RA, Doyle LW . Delayed (&gt;3 weeks) postnatal corticosteroids for chronic lung disease in preterm. Cochrane Database Syst Rev 2003; (1): Cd001145.

  35. Watterberg K . Evidence-based neonatal pharmacotherapy: postnatal corticosteroids. Clin Perinatol 2012; 39 (1): 47–59.

    Article  Google Scholar 

  36. Mosser DM, Zhang X . Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008; 226: 205–218.

    Article  CAS  Google Scholar 

  37. Yeh TF, Lin HC, Chang CH, Wu TS, Su BH, Li TC et al. Early intratracheal instillation of budesonide using surfactant as a vehicle to prevent chronic lung disease in preterm infants: a pilot study. Pediatrics 2008; 121 (5): e1310–e1318.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by R03-HD048508 (NICHD) and Ikaria (Grant program for fellows).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Davidson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasat, K., Patel, H., Predtechenska, O. et al. Anti-inflammatory actions of endogenous and exogenous interleukin-10 versus glucocorticoids on macrophage functions of the newly born. J Perinatol 34, 380–385 (2014). https://doi.org/10.1038/jp.2014.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.16

Keywords

Search

Quick links