Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular detection of M. tuberculosis and M. bovis and hematological and biochemical analyses in agricultural sprayers exposed to pesticides: A cross-sectional study in Punjab, Pakistan during 2014–2016

Abstract

We determined the correlation between a pesticide exposure, physical health and susceptibility toward tuberculosis along with hematological indices and liver enzymes’ alterations in sprayers exposed to pesticides. Molecular detection of Mycobacterium tuberculosis and Mycobacterium bovis was detected by targeting histone-like protein (hupB) gene. The WBC (white blood cells) and RBC (red blood cells) levels of male sprayers and non-sprayers were significantly different (P<0.05). In female spray workers, the WBC and neutrophils levels were significantly different as compared with non-sprayers. Overall, in both male and female pesticide-exposed sprayers, mean values of alanine amino transferase and aspartate amino transferase were higher as compared with unexposed workers. M. Tuberculosis were detected in 15% male sprayers and 36% female sprayers while, M. bovis was detected in 5% male sprayers and 10% female sprayers. A χ2-test indicated that there existed a significant different (P<0.05) between positive and negative M. tuberculosis and M. bovis in both male/female spray workers out of total. The susceptibility of pesticide-exposed sprayers to tuberculosis and alterations in hematology and liver enzymes is crucial for health. Toxic effects of pesticides may lead to a weak immune system and increased tuberculosis susceptibility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Safi J, Mourad TA, Yassin M . Hematological biomarkers in farm workers exposed to organophosphorus pesticides in the Gaza Strip. Arch Environ Occup Health 2005; 60: 235–241.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization (WHO). Media Centre. Tuberculosis March (2016). Available from http://www.who.int/mediacentre/factsheets/fs104/en/.

  3. Chadha V, Jagota P . Challenges and strategies for control of tuberculosis among agricultural workers. NTI Bull 2015; 38: 11–17.

    Google Scholar 

  4. Khwaja MA. Impact of pesticides on environment and health. SDPI Res News Bull. 2001; 8(2) March April..

  5. Pimentel D . Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agri Environ Ethics 1995; 8: 17–29.

    Article  Google Scholar 

  6. Food and Agricultural Organization (FAO). FAO/WHO global forum of food safety regulators. Marrakech, Morocco, 28–30 January; 2002. Available fromhttp://www.fao.org/DOCREP/MEETING/004/AB428E.HTM.Agenda Item 4.2 a, GF/CRD Iran-1&gt;.

  7. Tariq MI, Afzal S, Hussain I, Sultana N . Pesticides exposure in Pakistan: a review. Environ Int 2007; 33: 1107–1122.

    Article  CAS  PubMed  Google Scholar 

  8. Wilson C, Tisdell C . Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 2001; 39: 449–462.

    Article  Google Scholar 

  9. Sankararamakrishnan N, Sharma AK, Sanghi R . Organochlorine and organophosphorous pesticide residues in ground water and surface waters of Kanpur, Uttar Pradesh, India. Environ Int 2005; 31: 113–120.

    Article  CAS  PubMed  Google Scholar 

  10. Ouedraogo M, Tankoano A, Ouedraogo TZ, Guissou IP . Risk factors for pesticide poisoning among users in the cotton-production region of Fada N’Gourma in Burkina Faso. Environ Risques Sante 2009; 8: 343–347.

    Google Scholar 

  11. Toe A, Ilboudo S, Ouedraogo M, Guissou P . Biological alterations and self-reported symptoms among insecticides-exposed workers in Burkina Faso. Interdis Toxicol 2012; 5: 42–46.

    Article  Google Scholar 

  12. Damalas CA, Georgiou EB, Theodorou MG . Pesticide use and safety practices among Greek tobacco farmers: A survey. Int J Environ Health Res 2006; 6: 339–348.

    Article  Google Scholar 

  13. Chitra GA, Muraleedharan V, Swaminathan T, Veeraraghavan D . Use of pesticides and its impact on health of farmers in South India. Int J Occup Environ Health 2013; 12: 228–233.

    Article  Google Scholar 

  14. Ejigu D, Mekonnen Y . Pesticide use on agricultural fields and health problems in various activities. East Afr Med J 2005; 82: 427.

    CAS  PubMed  Google Scholar 

  15. Bolognesi C . Genotoxicity of pesticides: a review of human biomonitoring studies. Mut Res 2003; 543: 251–272.

    Article  CAS  Google Scholar 

  16. Amer M, Metwalli M, Abu El Magd Y . Skin diseases and enzymatic antioxidant activity among workers exposed to pesticides. East Mediterr Health J 2002; 8: 363–373.

    CAS  PubMed  Google Scholar 

  17. Jenner P . Parkinson’s disease, pesticides and mitochondrial dysfunction. Trends Neurosci 2001; 24: 245–246.

    Article  CAS  PubMed  Google Scholar 

  18. Mourad Abu T . Adverse impact of insecticides on the health of Palestinian farm workers in the Gaza Strip: a hematologic biomarker study. Int J Occup Environ Health 2005; 11: 144–149.

    Article  Google Scholar 

  19. Al-Sarar A, Abo Bakr Y, Al-Erimah G, Hussein H, Bayoumi A . Hematological and biochemical alterations in occupationally pesticides-exposed workers of Riyadh municipality, Kingdom of Saudi Arabia. Res J Environ Toxicol 2009; 3: 179–185.

    Article  Google Scholar 

  20. Anwar WA . Biomarkers of human exposure to pesticides. Environ Health Perspect 1997; 105: 801.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bretveld R, Brouwers M, Ebisch I, Roeleveld N . Influence of pesticides on male fertility. Scand J Work Environ Health 2007; 33: 13–28.

    Article  CAS  PubMed  Google Scholar 

  22. Chakraborty S, Mukherjee S, Roychoudhury S, Siddique S, Lahiri T, Ray MR . Chronic exposures to cholinesterase-inhibiting pesticides adversely affect respiratory health of agricultural workers in India. J Occup Health 2009; 51: 488–497.

    Article  CAS  PubMed  Google Scholar 

  23. Dalvie MA, White N, Raine R, Myers JE, London L, Thompson M et al. Long-term respiratory health effects of the herbicide, paraquat, among workers in the Western Cape. Occup Environ Med 1999; 56: 391–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grover P, Danadevi K, Mahboob M, Rozati R, Banu BS, Rahman M . Evaluation of genetic damage in workers employed in pesticide production utilizing the Comet assay. Mutagenesis 2003; 18: 201–205.

    Article  CAS  PubMed  Google Scholar 

  25. Hernández AF, Casado I, Pena G, Gil F, Villanueva E, Pla A . Low level of exposure to pesticides leads to lung dysfunction in occupationally exposed subjects. Inhal Toxicol 2008; 20: 839–849.

    Article  PubMed  Google Scholar 

  26. Ismail A, Rohlman D, Rasoul GA, Salem MA, Hendy O . Clinical and biochemical parameters of children and adolescents applying pesticides. Int J Occup Environ Med 2010; 1: 132–143.

    CAS  PubMed  Google Scholar 

  27. Van Maele-Fabry G, Libotte V, Willems J, Lison D . Review and meta-analysis of risk estimates for prostate cancer in pesticide manufacturing workers. Cancer Causes Control 2006; 17: 353–373.

    Article  PubMed  Google Scholar 

  28. Rastogi S, Tripathi S, Ravishanker D . A study of neurologic symptoms on exposure to organophosphate pesticides in the children of agricultural workers. Indian J Occup Environ Med 2010; 14: 54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hoppin JA, Umbach DM, London SJ, Alavanja MC, Sandler DP . Chemical predictors of wheeze among farmer pesticide applicators in the Agricultural Health Study. Am J Respir Crit Care Med 2002; 165: 683–689.

    Article  PubMed  Google Scholar 

  30. Salameh PR, Waked M, Baldi I, Brochard P, Saleh BA . Chronic bronchitis and pesticide exposure: a case–control study in Lebanon. Eur J Epidemiol 2006; 21: 681–688.

    Article  CAS  PubMed  Google Scholar 

  31. Lebailly P, Devaux A, Pottier D, De Meo M, Andre V, Baldi I et al. Urine mutagenicity and lymphocyte DNA damage in fruit growers occupationally exposed to the fungicide captan. Occup Environ Med 2003; 60: 910–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moser VC . Dose–response and time-course of neurobehavioral changes following oral chlorpyrifos in rats of different ages. Neurotoxicol Teratol 2000; 22: 713–723.

    Article  CAS  PubMed  Google Scholar 

  33. Jamil K, Das GP, Shaik AP, Dharmi SS, Murthy S . Epidemiological studies of pesticide-exposed individuals and their clinical implications. Curr Sci 2007; 92: 340–345.

    Google Scholar 

  34. Banu BS, Danadevi K, Rahman M, Ahuja Y, Kaiser J . Genotoxic effect of monocrotophos to sentinel species using comet assay. Food Chem Toxicol 2001; 39: 361–366.

    Article  Google Scholar 

  35. Jamil K, Shaik AP, Lakshimi AJ . Pesticide induced cytogenetic risk assessment in human lymphocyte culture in vitro. Bull Environ Contam Toxicol 2005a; 75: 7–14.

    Article  CAS  PubMed  Google Scholar 

  36. Jamil K, Shaik AP, Mahboob M, Krishna D . Effect of organophosphorus and organochlorine pesticides (monochrotophos, chlorpyriphos, dimethoate, and endosulfan) on human lymphocytes in‐vitro. Drug Chem Toxicol 2005b; 27: 133–144.

    Article  Google Scholar 

  37. Naravaneni R, Jamil K . Cytogenetic biomarkers of carbofuran toxicity utilizing human lymphocyte cultures in vitro. Drug Chem Toxicol 2005; 28: 359–372.

    Article  CAS  PubMed  Google Scholar 

  38. Hernández AF, Gómez MA, Pérez V, García-Lario JV, Pena G, Gil F et al. Influence of exposure to pesticides on serum components and enzyme activities of cytotoxicity among intensive agriculture farmers. Environ Res 2006; 102: 70–76.

    Article  PubMed  Google Scholar 

  39. Fareed M, Pathak MK, Bihari V, Mudiam MKR, Patel DK, Mathur N et al. Hematological and biochemical alterations in sprayers occupationally exposed to mixture of pesticides at a mango plantation in Lucknow, India. Toxicol Environ Chem 2010; 92: 1919–1928.

    Article  CAS  Google Scholar 

  40. O’Malley M . Clinical evaluation of pesticide exposure and poisonings. Lancet 1997; 349: 1161–1166.

    Article  PubMed  Google Scholar 

  41. Barnes J, Davies D . Blood cholinesterase levels in workers exposed to organo-phosphorus insecticides. Br Med J 1951; 2: 816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Calvert GM, Plate DK, Das R, Rosales R, Shafey O, Thomsen C et al. Acute occupational pesticide‐related illness in the US, 1998–1999: Surveillance findings from the SENSOR‐pesticides program. Am J Ind Med 2004; 45: 14–23.

    Article  CAS  PubMed  Google Scholar 

  43. Parveen Z, Masud S . Studies on pesticide residues in human blood. Pak J Sci Ind Res 2001; 44: 137–141.

    CAS  Google Scholar 

  44. Khan M, Khan MI, Aslam M, Naqvi S . Study of cholinesterase level in blood of cotton field workers exposed to pesticides. J Baqai Med Univ 2000; 3: 12–16.

    Google Scholar 

  45. Ajayi OC, Akinnifesi FK . Farmers understanding of pesticide safety labels and field spraying practices: a case study of cotton farmers in northern Cte dIvoire. Sci Res Essays 2007; 2: 204–210.

    Google Scholar 

  46. Strong LL, Thompson B, Coronado GD, Griffith WC, Vigoren EM, Islas I . Health symptoms and exposure to organophosphate pesticides in farmworkers. Am J Ind Med 2004; 46: 599–606.

    Article  CAS  PubMed  Google Scholar 

  47. Del Prado-Lu JL . Pesticide exposure, risk factors and health problems among cutflower farmers: a cross sectional study. J Occup Med Toxicol 2007; 2: 1.

    Article  Google Scholar 

  48. Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT et al. Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromed 2008; 13: 37–48.

    Article  Google Scholar 

  49. Dasgupta S, Meisner C, Wheeler D, Xuyen K, Lam NT . Pesticide poisoning of farm workers–implications of blood test results from Vietnam. Int J Hyg Environ Health 2007; 210: 121–132.

    Article  CAS  PubMed  Google Scholar 

  50. Ciesielski S, Loomis DP, Mims SR, Auer A . Pesticide exposures, cholinesterase depression, and symptoms among North Carolina migrant farmworkers. Am J Public Health 1994; 84: 446–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Barnes J . Problems in monitoring overexposure among spray workers in fruit orchards chronically exposed to diluted organophosphate pesticides. International. Arch Occup Environ Health 1999; 72: M068–M074.

    Article  Google Scholar 

  52. Azmi MA, Naqvi S, Akhtar K, Parveen S, Parveen R, Aslam M . Effect of pesticide residues on health and blood parameters of farm workers from rural Gadap, Karachi, Pakistan. J Environ Biol 2009; 30: 747–756.

    CAS  PubMed  Google Scholar 

  53. Gupta M, Sajid A, Sharma K, Ghosh S, Arora G, Singh R et al. HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. J Bacteriol 2014; 196: 2646–2657.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Prabhakar S, Mishra A, Singhal A, Katoch V, Thakral S, Tyagi J et al. Use of the hupB gene encoding a histone-like protein of Mycobacterium tuberculosis as a target for detection and differentiation of M. tuberculosis and M. bovis. J Clin Microbiol 2004; 42: 2724–2732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Payán-Rentería R, Garibay-Chavez G, Rangel-Ascencio R, Preciado-Martínez V, Muñoz-Islas L, Beltrán-Miranda C et al. Effect of chronic pesticide exposure in farm workers of a Mexico community. Arch Environ Occup Health 2012; 67: 22–30.

    Article  PubMed  Google Scholar 

  56. Lander F, Rønne M . Frequency of sister chromatid exchange and hematological effects in pesticide-exposed greenhouse sprayers. Scand J Work Environ Health 1995; 21: 283–288.

    Article  CAS  PubMed  Google Scholar 

  57. Costa LG, Cole TB, Vitalone A, Furlong CE . Measurement of paraoxonase (PON1) status as a potential biomarker of susceptibility to organophosphate toxicity. Clin Chim Acta 2005; 352: 37–47.

    Article  CAS  PubMed  Google Scholar 

  58. Singh S, Kumar V, Thakur S, Banerjee BD, Rautela RS, Grover SS et al. Paraoxonase-1 genetic polymorphisms and susceptibility to DNA damage in workers occupationally exposed to organophosphate pesticides. Toxicol Appl Pharmacol 2011; 252: 130–137.

    Article  CAS  PubMed  Google Scholar 

  59. Furlong C, Suzuki S, Stevens R, Marsillach J, Richter R, Jarvik G et al. Human PON1, a biomarker of risk of disease and exposure. Chem Biol Interact 2010; 187: 355–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hofmann JN, Keifer MC, Furlong CE, De Roos AJ, Farin FM, Fenske RA et al. Serum cholinesterase inhibition in relation to paraoxonase-1 (PON1) status among organophosphate-exposed agricultural pesticide handlers. Environ Health Perspect 2009; 117: 1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Costa LG, Giordano G, Cole TB, Marsillach J, Furlong CE . Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology 2013; 307: 115–122.

    Article  CAS  PubMed  Google Scholar 

  62. Murphy HH, Hoan NP, Matteson P, Morales Abubakar ALC . Farmers’ self-surveillance of pesticide poisoning: a 12-month pilot in northern Vietnam. Int J Occup Environ Health 2002; 8: 201–211.

    Article  PubMed  Google Scholar 

  63. Austin C, Arcury TA, Quandt SA, Preisser JS, Saavedra RM, Cabrera LF . Training farmworkers about pesticide safety: issues of control. J Health Care Poor Underserved 2001; 12: 236–249.

    Article  CAS  PubMed  Google Scholar 

  64. Patil JA, Patil AJ, Govindwar SP . Biochemical effects of various pesticides on sprayers of grape gardens. Indian J Clin Biochem 2003; 18: 16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pastor S, Lucero L, Gutierrez S, Durban R, Gomez C, Parron T et al. A follow-up study on micronucleus frequency in Spanish agricultural workers exposed to pesticides. Mutagenesis 2002; 17: 79–82.

    Article  CAS  PubMed  Google Scholar 

  66. Yousef M, El-Demerdash F, Kamel K, Al-Salhen K . Changes in some hematological and biochemical indices of rabbits induced by isoflavones and cypermethrin. Toxicology 2003; 189: 223–234.

    Article  CAS  PubMed  Google Scholar 

  67. Wesseling C, McConnell R, Partanen T, Hogstedt C . Agricultural pesticide use in developing countries: health effects and research needs. Int J Health Serv 1997; 27: 273–308.

    Article  CAS  PubMed  Google Scholar 

  68. Hodgson E . Production of pesticide metabolites by oxidative reactions. J Toxicol 1982; 19: 609–621.

    CAS  Google Scholar 

  69. Maroni M, Fait A . Health effects in man from long-term exposure to pesticides. A review of the 1975-1991 literature. Toxicology 1993; 78: 1–180.

    Article  CAS  PubMed  Google Scholar 

  70. Roeleveld N, Bretveld R . The impact of pesticides on male fertility. Curr Opin Obstet Gynecol 2008; 20: 229–233.

    Article  PubMed  Google Scholar 

  71. Tokarska-Rodak M, Tos-Luty S, Haratym-Maj A . Selected parameters of immunological response in hop growers during the period of intensive application of pesticides. Ann Agric Environ Med 2004; 11: 227–231.

    PubMed  Google Scholar 

  72. Remor AP, Totti CC, Moreira DA, Dutra GP, Heuser VD, Boeira JM . Occupational exposure of farm workers to pesticides: Biochemical parameters and evaluation of genotoxicity. Environ Int 2009; 35: 273–278.

    Article  CAS  PubMed  Google Scholar 

  73. Parent D, Thouvenot D . In vitro study of pesticide hematotoxicity in human and rat progenitor. J Pharmacol Toxicol Methods 1993; 30: 203–207.

    Article  Google Scholar 

  74. Worthing B, Walker B, Flores G, Hilje L, Mora G, Carballo M et al The pesticide manual: a world compendium: British Crop Protection Council, Londres (RU) 1987.

  75. Brown LM, Blair A, Gibson R, Everett GD, Cantor KP, Schuman LM et al. Pesticide exposures and other agricultural risk factors for leukemia among men in Iowa and Minnesota. Cancer Res 1990; 50: 6585–6591.

    CAS  PubMed  Google Scholar 

  76. Issaragrisil S, Chansung K, Kaufman DW, Sirijirachai J, Thamprasit T, Young NS . Aplastic anemia in rural Thailand: its association with grain farming and agricultural pesticide exposure. Aplastic Anemia Study Group. Am J Public Health 1997; 87: 1551–1554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Parrón T, Hernandez A, Pla A, Villanueva E . Clinical and biochemical changes in greenhouse sprayers chronically exposed to pesticides. Hum Exp Toxicol 1996; 15: 957–963.

    Article  PubMed  Google Scholar 

  78. Fareed M, Pathak MK, Bihari V, Kamal R, Srivastava AK, Kesavachandran CN . Adverse respiratory health and hematological alterations among agricultural workers occupationally exposed to organophosphate pesticides: a cross-sectional study in North India. PLoS One 2013; 8: e69755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sungur M, Güven M . Intensive care management of organophosphate insecticide poisoning. Crit Care 2001; 5: 1.

    Article  Google Scholar 

  80. Rastogi S, Singh VK, Kesavachandran C, Siddiqui M, Mathur N, Bharti R . Monitoring of plasma butyrylcholinesterase activity and hematological parameters in pesticide sprayers. Indian J Occup Environ Med 2008; 12: 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Azmi MA, Naqvi S, Azmi MA, Aslam M . Effect of pesticide residues on health and different enzyme levels in the blood of farm workers from Gadap (rural area) Karachi—Pakistan. Chemosphere 2006; 64: 1739–1744.

    Article  CAS  PubMed  Google Scholar 

  82. Srivastava A, Gupta B, Bihari V, Mathur N, Srivastava L, Pangtey B et al. Clinical, biochemical and neurobehavioural studies of workers engaged in the manufacture of quinalphos. Food Chem Toxicol 2000; 38: 65–69.

    Article  CAS  PubMed  Google Scholar 

  83. Kossmann S, Cierpka E, Szwed Z . Biochemical evaluation of the liver function in workers employed at the production of chlorfenvinphos. Przeglad Lekarski 1996; 54: 712–715.

    Google Scholar 

Download references

Acknowledgements

We are thankful to all participants of this study. We are thankful to the University of Health Sciences, Lahore and School of Physical Sciences (SPS), University of the Punjab, Lahore for the provision of all equipment and technical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasir Mahmood.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Manzoor, F., Mahmood, N. et al. Molecular detection of M. tuberculosis and M. bovis and hematological and biochemical analyses in agricultural sprayers exposed to pesticides: A cross-sectional study in Punjab, Pakistan during 2014–2016. J Expo Sci Environ Epidemiol 27, 434–443 (2017). https://doi.org/10.1038/jes.2016.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2016.88

Keywords

Search

Quick links