Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sources of indoor air pollution in New York City residences of asthmatic children

Abstract

Individuals spend 90% of their time indoors in proximity to sources of particulate and gaseous air pollutants. The sulfur tracer method was used to separate indoor concentrations of particulate matter (PM) PM2.5 mass, elements and thermally resolved carbon fractions by origin in New York City residences of asthmatic children. Enrichment factors relative to sulfur concentrations were used to rank species according to the importance of their indoor sources. Mixed effects models were used to identify building characteristics and resident activities that contributed to observed concentrations. Significant indoor sources were detected for OC1, Cl, K and most remaining OC fractions. We attributed 46% of indoor PM2.5 mass to indoor sources related to OC generation indoors. These sources include cooking (NO2, Si, Cl, K, OC4 and OP), cleaning (most OC fractions), candle/incense burning (black carbon, BC) and smoking (K, OC1, OC3 and EC1). Outdoor sources accounted for 28% of indoor PM2.5 mass, mainly photochemical reaction products, metals and combustion products (EC, EC2, Br, Mn, Pb, Ni, Ti, V and S). Other indoor sources accounted for 26% and included re-suspension of crustal elements (Al, Zn, Fe, Si and Ca). Indoor sources accounted for 72% of PM2.5 mass and likely contributed to differences in the composition of indoor and outdoor PM2.5 exposures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Pope C, Dockery D . Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 2006; 56: 709–742.

    Article  CAS  Google Scholar 

  2. Kattan M, Gergen PJ, Eggleston P, Visness CM, Mitchell HE . Health effects of indoor nitrogen dioxide and passive smoking on urban asthmatic children. J Aller Clin Immunol 2007; 120: 618–624.

    Article  CAS  Google Scholar 

  3. Patel MM, Hoepner L, Garfinkel R, Chillrud S, Reyes A, Quinn JW et al. Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age. Am J Respir Critic Care Med 2009; 180: 1107–1113.

    Article  CAS  Google Scholar 

  4. Patel MM, Quinn JW, Jung KH, Hoepner L, Diaz D, Perzanowski M et al. Traffic density and stationary sources of air pollution associated with wheeze, asthma, and immunoglobulin E from birth to age 5 years among New York City children. Environ Res 2011; 111: 1222–1229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeger S, Thomas D, Dominici F, Samet J, Schwartz J, Dockery D et al. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000; 108: 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallace L . Indoor particles: a review. J Air Waste Manag Assoc 1996; 46: 98.

    Article  CAS  PubMed  Google Scholar 

  7. Wallace L, Williams R . Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons. Environ Sci Technol 2005; 39: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  8. Allen R, Larson T, Sheppard L, Wallace L, Liu L . Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air. Environ Sci Technol 2003; 37: 3484–3492.

    Article  CAS  PubMed  Google Scholar 

  9. Schwartz J, Sarnat JA, Coull BA, Wilson WE . Effects of exposure measurement error on particle matter epidemiology: a simulation using data from a panel study in Baltimore, MD. J Exposure Sci Environ Epidemiol 2007; 17: S2–S10.

    Article  CAS  Google Scholar 

  10. United States Environmental Protection Agency Air Quality Criteria for Particulate Matter: Volume I of II 2004 EPA/600/P-99/002aF.

  11. Weschler C, Brauer M, Koutrakis P . Indoor ozone and nitrogen-dioxide - a potential pathway to the generation of nitrate radicals, dinitrogen pentaoxide, and nitric-acid indoors. Environ Sci Technol 1992; 26: 179–184.

    Article  CAS  Google Scholar 

  12. Reiss R, Ryan P, Koutrakis P . Modeling ozone deposition onto indoor residential surfaces. Environ Sci Technol 1994; 28: 504–513.

    Article  CAS  PubMed  Google Scholar 

  13. Abt E, Suh H, Allen G, Koutrakis P . Characterization of indoor particle sources: a study conducted in the metropolitan Boston area. Environ Health Perspect 2000; 108: 35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bennett D, Koutrakis P . Determining the infiltration of outdoor particles in the indoor environment using a dynamic model. J Aerosol Sci 2006; 37: 766–785.

    Article  CAS  Google Scholar 

  15. Highsmith V, Hardy R, Costa D, Germani M . Physical and chemical characterization of indoor aerosols resulting from the use of tap water in portable home humidifiers. Environ Sci Technol 1992; 26: 673–680.

    Article  CAS  Google Scholar 

  16. Suh H, Spengler J, Koutrakis P . Personal exposures to acid aerosols and ammonia. Environ Sci Technol 1992; 26: 2507–2517.

    Article  CAS  Google Scholar 

  17. Suh H, Koutrakis P, Spengler J . Validation of personal exposure models for sulfate and aerosol strong acidity. J Air Waste Manage Assoc 1993; 43: 845–850.

    Article  CAS  Google Scholar 

  18. Leaderer B, Naeher L, Jankun T, Balenger K, Holford T, Toth C et al. Indoor, outdoor, and regional summer and winter concentrations of PM10, PM2.5, SO42-, H+, NH4+, NO3-, NH3, and nitrous acid in homes with and without kerosene space heaters. Environ Health Perspect 1999; 107: 223–231.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarnat J, Long C, Koutrakis P, Coull B, Schwartz J, Suh H . Using sulfur as a tracer of outdoor fine particulate matter. Environ Sci Technol 2002; 36: 5305–5314.

    Article  CAS  PubMed  Google Scholar 

  20. Brown KW, Sarnat JA, Suh HH, Coull BA, Koutrakis P . Factors influencing relationships between personal and ambient concentrations of gaseous and particulate pollutants. Sci Total Environ 2009; 407: 3754–3765.

    Article  CAS  PubMed  Google Scholar 

  21. Sarnat J, Koutrakis P, Suh H . Assessing the relationship between personal particulate and gaseous exposures of senior citizens living in Baltimore, MD. J Air Waste Manage Assoc 2000; 50: 1184–1198.

    Article  CAS  Google Scholar 

  22. Sarnat J, Brown K, Schwartz J, Coull B, Koutrakis P . Ambient gas concentrations and personal particulate matter exposures - Implications for studying the health effects of particles. Epidemiology 2005; 16: 385–395.

    Article  PubMed  Google Scholar 

  23. Chow J, Watson J, Pritchett L, Pierson W, Frazier C, Purcell R . The dri thermal optical reflectance carbon analysis system - description, evaluation and applications in United-States Air-Quality Studies. Atmos Environ A 1993; 27: 1185–1201.

    Article  Google Scholar 

  24. Demokritou P, Kavouras I, Harrison D, Koutrakis P . Development and evaluation of an impactor for a PM2.5 speciation sampler. J Air Waste Manage Assoc 2001; 51: 514–523.

    Article  CAS  Google Scholar 

  25. Sahu M, Hu S, Ryan PH, Le Masters G, Grinshpun SA, Chow JC et al. Chemical compositions and source identification of PM2.5 aerosols for estimation of a diesel source surrogate. Sci Total Environ 2011; 409: 2642–2651.

    Article  CAS  PubMed  Google Scholar 

  26. Demokritou P, Kavouras I, Ferguson S, Koutrakis P . Development and laboratory performance evaluation of a personal multipollutant sampler for simultaneous measurements of particulate and gaseous pollutants. Aerosol Sci Technol 2001; 35: 741–752.

    Article  CAS  Google Scholar 

  27. Liu L, Box M, Kalman D, Kaufman J, Koenig J, Larson T et al. Exposure assessment of particulate matter for susceptible populations in Seattle. Environ Health Perspect 2003; 111: 909–918.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Koutrakis P, Wolfson J, Bunyaviroch A, Froehlich S, Hirano K, Mulik J . Measurement of ambient ozone using a nitrite-coated filter. Anal Chem 1993; 65: 209–214.

    Article  CAS  Google Scholar 

  29. Hammond S, Leaderer B, Roche A, Schenker M . Collection and analysis of nicotine as a marker for environmental tobacco-smoke. Atmos Environ 1987; 21: 457–462.

    Article  CAS  Google Scholar 

  30. Polidori A, Turpin B, Meng QY, Lee JH, Weisel C, Morandi M et al. Fine organic particulate matter dominates indoor-generated PM2.5 in RIOPA homes. J Exp Sci Environ Epidemiol 2006; 16: 321–331.

    Article  CAS  Google Scholar 

  31. SAS Institute Inc Cary, NC, USA. SAS Software version 9.

  32. SAS Institute Inc Cary, NC, USA. JMP Pro 10 2007.

  33. Hodas N, Meng Q, Lunden MM, Rich DQ, Oezkaynak H, Baxter LK et al. Variability in the fraction of ambient fine particulate matter found indoors and observed heterogeneity in health effect estimates. J Exp Sci Environ Epidemiol 2012; 22: 448–454.

    Article  CAS  Google Scholar 

  34. Lim S, Lee M, Lee G, Kim S, Yoon S, Kang K . Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature. Atmos Chem Phys 2012; 12: 2007–2024.

    Article  CAS  Google Scholar 

  35. Meng QY, Spector D, Colome S, Turpin B . Determinants of indoor and personal exposure to PM2.5 of indoor and outdoor origin during the RIOPA study. Atmos Environ 2009; 43: 5750–5758.

    Article  CAS  PubMed Central  Google Scholar 

  36. Wallace L, Mitchell H, O'Connor G, Neas L, Lippmann M, Kattan M et al. Particle concentrations in inner-city homes of children with asthma: the effect of smoking, cooking, and outdoor pollution. Environ Health Perspect 2003; 111: 1265–1272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meng Q, Turpin B, Korn L, Weisel C, Morandi M, Colome S et al. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. J Expo Anal Environ Epidemiol 2005; 15: 17–28.

    Article  CAS  PubMed  Google Scholar 

  38. Long C, Sarnat J . Indoor-outdoor relationships and infiltration behavior of elemental components of outdoor PM2.5 for Boston-area homes. Aerosol Sci Technol 2004; 38: 91–104.

    Article  CAS  Google Scholar 

  39. Cowen KA, Ollison WM . Continuous monitoring of particle emissions during showering. J Air Waste Manage Assoc 2006; 56: 1662–1668.

    Article  CAS  Google Scholar 

  40. Zhao W, Hopke P, Norris G, Williams R, Paatero P . Source apportionment and analysis on ambient and personal exposure samples with a combined receptor model and an adaptive blank estimation strategy. Atmos Environ 2006; 40: 3788–3801.

    Article  CAS  Google Scholar 

  41. Zhao W, Hopke PK, Gelfand EW, Rabinovitch N . Use of an expanded receptor model for personal exposure analysis in schoolchildren with asthma. Atmos Environ 2007; 41: 4084–4096.

    Article  CAS  Google Scholar 

  42. Long C, Suh H, Koutrakis P . Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manage Assoc 2000; 50: 1236–1250.

    Article  CAS  Google Scholar 

  43. Nazaroff W, Weschler C . Cleaning products and air fresheners: exposure to primary and secondary air pollutants. Atmos Environ 2004; 38: 2841–2865.

    Article  CAS  Google Scholar 

  44. Wainman T, Zhang J, Weschler C, Lioy P . Ozone and limonene in indoor air: a source of submicron particle exposure. Environ Health Perspect 2000; 108: 1139–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coleman BK, Lunden MM, Destaillats H, Nazaroff WW . Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products. Atmos Environ 2008; 42: 8234–8245.

    Article  CAS  Google Scholar 

  46. Sleiman M, Destaillats H, Smith JD, Liu C, Ahmed M, Wilson KR et al. Secondary organic aerosol formation from ozone-initiated reactions with nicotine and secondhand tobacco smoke. Atmos Environ 2010; 44: 4191–4198.

    Article  CAS  Google Scholar 

  47. Naumova Y, Eisenreich S, Turpin B, Weisel C, Morandi M, Colome S et al. Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the USA. Environ Sci Technol 2002; 36: 2552–2559.

    Article  CAS  PubMed  Google Scholar 

  48. Reff A, Turpin BJ, Offenberg JH, Weisel CP, Zhang J, Morandi M et al. A functional group characterization of organic PM2.5 exposure: results from the RIOPA study. Atmos Environ 2007; 41: 4585–4598.

    Article  CAS  Google Scholar 

  49. Olson D, Norris G . Sampling artifacts in measurement of elemental and organic carbon: low-volume sampling in indoor and outdoor environments. Atmos Environ 2005; 39: 5437–5445.

    Article  CAS  Google Scholar 

  50. Shao L, Li J, Zhao H, Yang S, Li H, Li W et al. Associations between particle physicochemical characteristics and oxidative capacity: an indoor PM10 study in Beijing, China. Atmos Environ 2007; 41: 5316–5326.

    Article  CAS  Google Scholar 

  51. Kim E, Hopke P . Improving source apportionment of fine particles in the eastern United States utilizing temperature-resolved carbon fractions. J Air Waste Manage Assoc 2005; 55: 1456–1463.

    Article  CAS  Google Scholar 

  52. Miyazaki Y, Kondo Y, Han S, Koike M, Kodama D, Komazaki Y et al. Chemical characteristics of water-soluble organic carbon in the Asian outflow. J Geophys Res Atmos 2007; 112: D22S30.

    Article  Google Scholar 

  53. Polidori A, Arhami M, Sioutas C, Delfino RJ, Allen R . Indoor/outdoor relationships, trends, and carbonaceous content of fine particulate matter in retirement homes of the Los Angeles basin. J Air Waste Manage Assoc 2007; 57: 366–379.

    Article  CAS  Google Scholar 

  54. Ozkaynak H, Xue J, Spengler J, Wallace L, Pellizzari E, Jenkins P . Personal exposure to airborne particles and metals: results from the particle team study in Riverside, California. J Expo Anal Environ Epidemiol 1996; 6: 57–78.

    CAS  PubMed  Google Scholar 

  55. Larson T, Gould T, Simpson C, Liu LJS, Clairborn C, Lewtas J . Source apportionment of indoor, outdoor, and personal PM2.5 in Seattle, Washington, using positive matrix factorization. J Air Waste Manage Assoc 2004; 54: 1175–1187.

    Article  Google Scholar 

  56. Balasubramanian R, Lee SS . Characteristics of indoor aerosols in residential homes in urban locations: a case study in Singapore. J Air Waste Manage Assoc 2007; 57: 981–990.

    Article  CAS  Google Scholar 

  57. Sternbeck J, Sjodin A, Andreasson K . Metal emissions from road traffic and the influence of resuspension - results from two tunnel studies. Atmos Environ 2002; 36: 4735–4744.

    Article  CAS  Google Scholar 

  58. Brown KW, Sarnat JA, Koutrakis P . Concentrations of PM2.5 mass and components in residential and non-residential indoor microenvironments: The Sources and Composition of Particulate Exposures study. J Exposure Sci Environ Epidemiol 2012; 22: 161–172.

    Article  CAS  Google Scholar 

  59. Koutrakis P, Brauer M, Briggs S, Leaderer B . Indoor exposures to fine aerosols and acid gases. Environ Health Perspect 1991; 95: 23–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Oglesby L, Kunzli N, Roosli M, Braun-Fahrlander C, Mathys P, Stern W et al. Validity of ambient levels of fine particles as surrogate for personal exposure to outdoor air pollution - Results of the European EXPOLIS-EAS study (Swiss Center Basel). J Air Waste Manage Assoc 2000; 50: 1251–1261.

    Article  CAS  Google Scholar 

  61. Stranger M, Potgieter-Vermaak SS, Van Grieken R . Particulate matter and gaseous pollutants in residences in Antwerp, Belgium. Sci Total Environ 2009; 407: 1182–1192.

    Article  CAS  PubMed  Google Scholar 

  62. Spicer C, Coutant R, Ward G, Joseph D, Gaynor A, Billick I . Rates and mechanisms of No2 removal from indoor air by residential materials. Environ Int 1989; 15: 643–654.

    Article  CAS  Google Scholar 

  63. Qin Y, Kim E, Hopke PK . The concentrations and sources of PM2.5 in metropolitan New York City. Atmos Environ 2006; 40: S312–S332.

    Article  CAS  Google Scholar 

  64. Peltier RE, Lippmann M . Residual oil combustion: 2. Distributions of airborne nickel and vanadium within New York City. J Exposure Sci Environ Epidemiol 2010; 20: 342–350.

    Article  CAS  Google Scholar 

  65. Brauer M, Koutrakis P, Keeler G, Spengler J . Indoor and outdoor concentrations of inorganic acidic aerosols and gases. J Air Waste Manage Assoc 1991; 41: 171–181.

    Article  CAS  PubMed  Google Scholar 

  66. Liu L, Olson M, Allen G, Koutrakis P, Mcdonnell W, Gerrity T . Evaluation of the Harvard ozone passive sampler on human-subjects indoors. Environ Sci Technol 1994; 28: 915–923.

    Article  CAS  PubMed  Google Scholar 

  67. Geyh A, Wolfson J, Koutrakis P, Mulik J, Avol E . Development and evaluation of a small active ozone sampler. Environ Sci Technol 1997; 31: 2326–2330.

    Article  CAS  Google Scholar 

  68. Lee K, Vallarino J, Dumyahn T, Ozkaynak H, Spengler J . Ozone decay rates in residences. J Air Waste Manage Assoc 1999; 49: 1238–1244.

    Article  CAS  Google Scholar 

  69. Reiss R, Ryan P, Tibbetts S, Koutrakis P . Measurement of organic-acids, aldehydes, and ketones in residential environments and their relation to ozone. J Air Waste Manage Assoc 1995; 45: 811–822.

    Article  CAS  Google Scholar 

  70. Weschler C, Shields H . Indoor ozone/terpene reactions as a source of indoor particles. Atmos Environ 1999; 33: 2301–2312.

    Article  CAS  Google Scholar 

  71. Weschler C . Ozone in indoor environments: concentration and chemistry. Int J Indoor Air Quality Climate 2000; 10: 269–288.

    CAS  Google Scholar 

  72. Britigan N, Alshawa A, Nizkorodov S . Quantification of ozone levels in indoor environments generated by ionization and ozonolysis air purifiers. J Air Waste Manage Assoc 2006; 56: 601–610.

    Article  CAS  Google Scholar 

  73. Zhang J, Lioy P . Ozone in residential air - concentrations, i/o ratios, indoor chemistry, and exposures. Indoor Air Int J Indoor Air Qual Clim 1994; 4: 95–105.

    CAS  Google Scholar 

  74. Baxter LK, Clougherty JE, Paciorek CJ, Wright RJ, Levy JI . Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter and elemental carbon using questionnaire and geographic information system based data. Atmos Environ 2007; 41: 6561–6571.

    Article  CAS  PubMed Central  Google Scholar 

  75. Kraev TA, Adamkiewicz G, Hammond SK, Spengler JD . Indoor concentrations of nicotine in low-income, multi-unit housing: associations with smoking behaviours and housing characteristics. Tob Control 2009; 18: 438–444.

    Article  CAS  PubMed  Google Scholar 

  76. Klepeis NE, Nazaroff WW . Modeling residential exposure to secondhand tobacco smoke. Atmos Environ 2006; 40: 4393–4407.

    Article  CAS  Google Scholar 

  77. Sexton K, Webber L, Hayward S, Sextro R . Characterization of particle composition, organic vapor constituents and mutagenicity of indoor air pollutant emissions. Environ Int 1986; 12: 351.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Electric Power Research Institute (EP-P15909/C7932). Rima Habre was supported by the Harvard School of Public Health Dean’s Scholarship. We thank Tom Gentile, George O’Connor and Lance Wallace, members of the CAPAS study scientific advisory committee, for their guidance in all phases of the study. Steve Ferguson and Mike Wolfson are also acknowledged for designing the air sampling monitors and conducting laboratory analyses. We also thank all the individuals who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Habre.

Ethics declarations

Competing interests

Dr. Rohr is employed by the Electric Power Research Institute, which is primarily supported by the electric industry in the United States and abroad. EPRI is an independent non-profit 501(c)3 organization that funds external research at a number of universities and institutes worldwide. Other authors declare no other conflict of interest, personal, financial, or otherwise, with the material presented in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habre, R., Coull, B., Moshier, E. et al. Sources of indoor air pollution in New York City residences of asthmatic children. J Expo Sci Environ Epidemiol 24, 269–278 (2014). https://doi.org/10.1038/jes.2013.74

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2013.74

Keywords

This article is cited by

Search

Quick links