Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cholecystokinin-induced satiety, a key gut servomechanism that is affected by the membrane microenvironment of this receptor

Abstract

The gastrointestinal (GI) tract has a central role in nutritional homeostasis, as location for food ingestion, digestion and absorption, with the gut endocrine system responding to and regulating these events, as well as influencing appetite. One key GI hormone with the full spectrum of these activities is cholecystokinin (CCK), a peptide released from neuroendocrine I cells scattered through the proximal intestine in response to fat and protein, with effects to stimulate gall bladder contraction and pancreatic exocrine secretion, to regulate gastric emptying and intestinal transit, and to induce satiety. There has been interest in targeting the type 1 CCK receptor (CCK1R) for drug development to provide non-caloric satiation as an aid to dieting and weight loss; however, there have been concerns about CCK1R agonists related to side effects and potential trophic impact on the pancreas. A positive allosteric modulator (PAM) of CCK action at this receptor without intrinsic agonist activity could provide a safer and more effective approach to long-term administration. In addition, CCK1R stimulus–activity coupling has been shown to be negatively affected by excess membrane cholesterol, a condition described in the metabolic syndrome, thereby potentially interfering with an important servomechanism regulating appetite. A PAM targeting this receptor could also potentially correct the negative impact of cholesterol on CCK1R function. We will review the molecular basis for binding natural peptide agonist, binding and action of small molecules within the allosteric pocket, and the impact of cholesterol. Novel strategies for taking advantage of this receptor for the prevention and management of obesity will be reviewed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Forouhi NG, Wareham NJ . The EPIC-InterAct Study: a study of the interplay between genetic and lifestyle behavioual factors on the risk of type 2 diabetes in European populations. Curr Nutr Rep 2014; 3: 355–363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Christou NV, Sampalis JS, Liberman M, Look D, Auger S, McLean AP et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann Surg 2004; 240: 416–424.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kim GW, Lin JE, Blomain ES, Waldman SA . Antiobesity pharmacotherapy: new drugs and emerging targets. Clin Pharmacol Ther 2014; 95: 53–66.

    Article  CAS  PubMed  Google Scholar 

  4. Rueda-Clausen CF, Padwal RS, Sharma AM . New pharmacological approaches for obesity management. Nat Rev Endocrinol 2013; 9: 467–478.

    Article  CAS  PubMed  Google Scholar 

  5. Shyh G, Cheng-Lai A . New antiobesity agents: lorcaserin (Belviq) and phentermine/topiramate ER (Qsymia). Cardiol Rev 2014; 22: 43–50.

    Article  PubMed  Google Scholar 

  6. Pournaras DJ, Le Roux CW . The effect of bariatric surgery on gut hormones that alter appetite. Diabetes Metab 2009; 35: 508–512.

    Article  CAS  PubMed  Google Scholar 

  7. Little TJ, Horowitz M, Feinle-Bisset C . Role of cholecystokinin in appetite control and body weight regulation. Obes Rev 2005; 6: 297–306.

    Article  CAS  PubMed  Google Scholar 

  8. Chandra R, Liddle RA . Cholecystokinin. Curr Opin Endocrinol Diabetes Obes 2007; 14: 63–67.

    Article  CAS  PubMed  Google Scholar 

  9. Simasko SM, Wiens J, Karpiel A, Covasa M, Ritter RC . Cholecystokinin increases cytosolic calcium in a subpopulation of cultured vagal afferent neurons. Am J Physiol Regul Integr Comp Physiol 2002; 283: R1303–R1313.

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Owyang C . Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 1994; 107: 525–531.

    Article  CAS  PubMed  Google Scholar 

  11. Gibbs J, Young RC, Smith GP . Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 1973; 84: 488–495.

    Article  CAS  PubMed  Google Scholar 

  12. Ballinger AB, Clark ML . L-phenylalanine releases cholecystokinin (CCK) and is associated with reduced food intake in humans: evidence for a physiological role of CCK in control of eating. Metabolism 1994; 43: 735–738.

    Article  CAS  PubMed  Google Scholar 

  13. Elliott RL, Kopecka H, Bennett MJ, Shue YK, Craig R, Lin CW et al. Tetrapeptide CCK agonists: structure-activity studies on modifications at the N-terminus. J Med Chem 1994; 37: 309–313.

    Article  CAS  PubMed  Google Scholar 

  14. Elliott RL, Cameron KO, Chin JE, Bartlett JA, Beretta EE, Chen Y et al. Discovery of N-benzyl-2-[(4S)-4-(1H-indol-3-ylmethyl)-5-oxo-1-phenyl-4,5-dihydro-6H-[1,2,4]triazolo[4,3-a][1,5]benzodiazepin-6-yl]-N-isopropylacetamide, an orally active, gut-selective CCK1 receptor agonist for the potential treatment of obesity. Bioorg Med Chem Lett 2010; 20: 6797–6801.

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhri OB, Salem V, Murphy KG, Bloom SR . Gastrointestinal satiety signals. Annu Rev Physiol 2008; 70: 239–255.

    Article  CAS  PubMed  Google Scholar 

  16. Dockray GJ . Cholecystokinin and gut-brain signalling. Regul Pept 2009; 155: 6–10.

    Article  CAS  PubMed  Google Scholar 

  17. Berger R, Zhu C, Hansen AR, Harper B, Chen Z, Holt TG et al. 2-Substituted piperazine-derived imidazole carboxamides as potent and selective CCK1R agonists for the treatment of obesity. Bioorg Med Chem Lett 2008; 18: 4833–4837.

    Article  CAS  PubMed  Google Scholar 

  18. Sherrill RG, Berman JM, Birkemo L, Croom DK, Dezube M, Ervin GN et al. 1,4-Benzodiazepine peripheral cholecystokinin (CCK-A) receptor agonists. Bioorg Med Chem Lett 2001; 11: 1145–1148.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu C, Hansen AR, Bateman T, Chen Z, Holt TG, Hubert JA et al. Discovery of imidazole carboxamides as potent and selective CCK1R agonists. Bioorg Med Chem Lett 2008; 18: 4393–4396.

    Article  CAS  PubMed  Google Scholar 

  20. Aquino CJ, Armour DR, Berman JM, Birkemo LS, Carr RA, Croom DK et al. Discovery of 1,5-benzodiazepines with peripheral cholecystokinin (CCK-A) receptor agonist activity. 1. Optimization of the agonist ‘trigger’. J Med Chem 1996; 39: 562–569.

    Article  CAS  PubMed  Google Scholar 

  21. Niederau C, Ferrell LD, Grendell JH . Caerulein-induced acute necrotizing pancreatitis in mice: protective effects of proglumide, benzotript, and secretin. Gastroenterology 1985; 88: 1192–1204.

    Article  CAS  PubMed  Google Scholar 

  22. Solomon TE, Petersen H, Elashoff J, Grossman MI . Interaction of caerulein and secretin on pancreatic size and composition in rat. Am J Physiol 1978; 235: E714–E719.

    CAS  PubMed  Google Scholar 

  23. Mainz D, Webster PD . Pancreatic carcinoma. A review of etiologic considerations. Am J Dig Dis 1974; 19: 459–464.

    Article  CAS  PubMed  Google Scholar 

  24. Tang C, Biemond I, Lamers CB . Cholecystokinin receptors in human pancreas and gallbladder muscle: a comparative study. Gastroenterology 1996; 111: 1621–1626.

    Article  CAS  PubMed  Google Scholar 

  25. Ji B, Bi Y, Simeone D, Mortensen RM, Logsdon CD . Human pancreatic acinar cells do not respond to cholecystokinin. Pharmacol Toxicol 2002; 91: 327–332.

    Article  CAS  PubMed  Google Scholar 

  26. Murphy JA, Criddle DN, Sherwood M, Chvanov M, Mukherjee R, McLaughlin E et al. Direct activation of cytosolic Ca2+ signaling and enzyme secretion by cholecystokinin in human pancreatic acinar cells. Gastroenterology 2008; 135: 632–641.

    Article  CAS  PubMed  Google Scholar 

  27. Conn PJ, Christopoulos A, Lindsley CW . Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 2009; 8: 41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wootten D, Christopoulos A, Sexton PM . Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 2013; 12: 630–644.

    Article  CAS  PubMed  Google Scholar 

  29. Nemeth EF, Heaton WH, Miller M, Fox J, Balandrin MF, Van Wagenen BC et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther 2004; 308: 627–635.

    Article  CAS  PubMed  Google Scholar 

  30. Thompson JC, Fender HR, Ramus NI, Villar HV, Rayford PL . Cholecystokinin metabolism in man and dogs. Ann Surg 1975; 182: 496–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoshi H, Logsdon CD . Both low- and high-affinity CCK receptor states mediate trophic effects on rat pancreatic acinar cells. Am J Physiol 1993; 265: G1177–G1181.

    CAS  PubMed  Google Scholar 

  32. Dawra R, Saluja A, Lerch MM, Saluja M, Logsdon C, Steer M . Stimulation of pancreatic growth by cholecystokinin is mediated by high affinity receptors on rat pancreatic acinar cells. Biochem Biophys Res Commun 1993; 193: 814–820.

    Article  CAS  PubMed  Google Scholar 

  33. Smith JP, Solomon TE . Cholecystokinin and pancreatic cancer: the chicken or the egg? Am J Physiol 2014; 306: G91–G101.

    Google Scholar 

  34. Miller LJ, Gao F . Structural basis of cholecystokinin receptor binding and regulation. Pharmacol Ther 2008; 119: 83–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller LJ, Lybrand TP . Molecular basis of agonist binding to the type A cholecystokinin receptor. Pharmacol Toxicol 2002; 91: 282–285.

    Article  CAS  PubMed  Google Scholar 

  36. Dong M, Lam PC, Pinon DI, Abagyan R, Miller LJ . Elucidation of the molecular basis of cholecystokinin peptide docking to its receptor using site-specific intrinsic photoaffinity labeling and molecular modeling. Biochemistry 2009; 48: 5303–5312.

    Article  CAS  PubMed  Google Scholar 

  37. Ding XQ, Dolu V, Hadac EM, Holicky EL, Pinon DI, Lybrand TP et al. Refinement of the structure of the ligand-occupied cholecystokinin receptor using a photolabile amino-terminal probe. J Biol Chem 2001; 276: 4236–4244.

    Article  CAS  PubMed  Google Scholar 

  38. Harikumar KG, Gao F, Pinon DI, Miller LJ . Use of multidimensional fluorescence resonance energy transfer to establish the orientation of cholecystokinin docked at the type A cholecystokinin receptor. Biochemistry 2008; 47: 9574–9581.

    Article  CAS  PubMed  Google Scholar 

  39. Archer-Lahlou E, Tikhonova I, Escrieut C, Dufresne M, Seva C, Pradayrol L et al. Modeled structure of a G-protein-coupled receptor: the cholecystokinin-1 receptor. J Med Chem 2005; 48: 180–191.

    Article  CAS  PubMed  Google Scholar 

  40. Hadac EM, Dawson ES, Darrow JW, Sugg EE, Lybrand TP, Miller LJ . Novel benzodiazepine photoaffinity probe stereoselectively labels a site deep within the membrane-spanning domain of the cholecystokinin receptor. J Med Chem 2006; 49: 850–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Harikumar KG, Cawston EE, Miller LJ . Fluorescence polarization screening for allosteric small molecule ligands of the cholecystokinin receptor. Assay Drug Dev Technol 2011; 9: 394–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cawston EE, Lam PC, Harikumar KG, Dong M, Ball AM, Augustine ML et al. Molecular basis for binding and subtype selectivity of 1,4-benzodiazepine antagonist ligands of the cholecystokinin receptor. J Biol Chem 2012; 287: 18618–18635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harikumar KG, Cawston EE, Lam PC, Patil A, Orry A, Henke BR et al. Molecular basis for benzodiazepine agonist action at the type 1 cholecystokinin receptor. J Biol Chem 2013; 288: 21082–21095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao F, Sexton PM, Christopoulos A, Miller LJ . Benzodiazepine ligands can act as allosteric modulators of the type 1 cholecystokinin receptor. Bioorg Med Chem Lett 2008; 18: 4401–4404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akgun E, Korner M, Gao F, Harikumar KG, Waser B, Reubi JC et al. Synthesis and in vitro characterization of radioiodinatable benzodiazepines selective for type 1 and type 2 cholecystokinin receptors. J Med Chem 2009; 52: 2138–2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dong M, Vattelana AM, Lam PCH, Orry A, Abagyan R, Christopoulos A et al. Development of a highly selective allosteric antagonist radioligand for the type 1 cholecystokinin receptor and elucidation of its molecular basis of binding. Mol Pharmacol 2015; 87: 130–140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Henke BR, Aquino CJ, Birkemo LS, Croom DK, Dougherty Jr RW, Ervin GN et al. Optimization of 3-(1H-indazol-3-ylmethyl)-1,5-benzodiazepines as potent, orally active CCK-A agonists. J Med Chem 1997; 40: 2706–2725.

    Article  CAS  PubMed  Google Scholar 

  48. Desai AJ, Miller LJ . Sensitivity of cholecystokinin receptors to membrane cholesterol content. Front Endocrinol 2012; 3: 123.

    Article  CAS  Google Scholar 

  49. Behar J, Lee KY, Thompson WR, Biancani P . Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology 1989; 97: 1479–1484.

    Article  CAS  PubMed  Google Scholar 

  50. Xiao ZL, Amaral J, Biancani P, Behar J . Impaired cytoprotective function of muscle in human gallbladders with cholesterol stones. Am J Physiol 2005; 288: G525–G532.

    CAS  Google Scholar 

  51. McDougall RM, Walker K, Thurston OG . Prolonged secretion of lithogenic bile after cholecystectomy. Ann Surg 1975; 182: 150–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao ZL, Chen Q, Amaral J, Biancani P, Jensen RT, Behar J . CCK receptor dysfunction in muscle membranes from human gallbladders with cholesterol stones. Am J Physiol 1999; 276: G1401–G1407.

    CAS  PubMed  Google Scholar 

  53. Chen Q, Amaral J, Biancani P, Behar J . Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology 1999; 116: 678–685.

    Article  CAS  PubMed  Google Scholar 

  54. Yu P, Chen Q, Biancani P, Behar J . Membrane cholesterol alters gallbladder muscle contractility in prairie dogs. Am J Physiol 1996; 271: G56–G61.

    CAS  PubMed  Google Scholar 

  55. Desai AJ, Harikumar KG, Miller LJ . A type 1 cholecystokinin receptor mutant that mimics the dysfunction observed for wild type receptor in a high cholesterol environment. J Biol Chem 2014; 289: 18314–18326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Potter RM, Harikumar KG, Wu SV, Miller LJ . Differential sensitivity of types 1 and 2 cholecystokinin receptors to membrane cholesterol. J Lipid Res 2012; 53: 137–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harikumar KG, Potter RM, Patil A, Echeveste V, Miller LJ . Membrane cholesterol affects stimulus-activity coupling in type 1, but not type 2, CCK receptors: use of cell lines with elevated cholesterol. Lipids 2013; 48: 231–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Seres I, Foris G, Varga Z, Kosztaczky B, Kassai A, Balogh Z et al. The association between angiotensin II-induced free radical generation and membrane fluidity in neutrophils of patients with metabolic syndrome. J Membr Biol 2006; 214: 91–98.

    Article  CAS  PubMed  Google Scholar 

  59. Paragh G, Kovacs E, Seres I, Keresztes T, Balogh Z, Szabo J et al. Altered signal pathway in granulocytes from patients with hypercholesterolemia. J Lipid Res 1999; 40: 1728–1733.

    CAS  PubMed  Google Scholar 

  60. Chen DY, Deutsch JA, Gonzalez MF, Gu Y . The induction and suppression of c-fos expression in the rat brain by cholecystokinin and its antagonist L364, 718. Neurosci Lett 1993; 149: 91–94.

    Article  CAS  PubMed  Google Scholar 

  61. Monnikes H, Lauer G, Arnold R . Peripheral administration of cholecystokinin activates c-fos expression in the locus coeruleus/subcoeruleus nucleus, dorsal vagal complex and paraventricular nucleus via capsaicin-sensitive vagal afferents and CCK-A receptors in the rat. Brain Res 1997; 770: 277–288.

    Article  CAS  PubMed  Google Scholar 

  62. Day HE, McKnight AT, Poat JA, Hughes J . Evidence that cholecystokinin induces immediate early gene expression in the brainstem, hypothalamus and amygdala of the rat by a CCKA receptor mechanism. Neuropharmacology 1994; 33: 719–727.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (DK032878) and by the Mayo Clinic. Publication of this article was sponsored by the Université Laval’s Research Chair in Obesity in an effort to inform the public on the causes, consequences, treatments and prevention of obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L J Miller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, A., Dong, M., Harikumar, K. et al. Cholecystokinin-induced satiety, a key gut servomechanism that is affected by the membrane microenvironment of this receptor. Int J Obes Supp 6 (Suppl 1), S22–S27 (2016). https://doi.org/10.1038/ijosup.2016.5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2016.5

This article is cited by

Search

Quick links