Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Unravelling the mysterious roles of melanocortin-3 receptors in metabolic homeostasis and obesity using mouse genetics

Abstract

The central nervous melanocortin system maintains body mass and adiposity within a ‘healthy’ range by regulating satiety and metabolic homeostasis. Neural melanocortin-4 receptors (MC4R) modulate satiety signals and regulate autonomic outputs governing glucose and lipid metabolism in the periphery. The functions of melanocortin-3 receptors (MC3R) have been less well defined. We have observed that food anticipatory activity (FAA) is attenuated in Mc3r−/− mice housed in light:dark or constant dark conditions. Mc3r−/− mice subjected to the restricted feeding protocol that was used to induce FAA also developed insulin resistance, dyslipidaemia, impaired glucose tolerance and evidence of a cellular stress response in the liver. MC3Rs may thus function as modulators of oscillator systems that govern circadian rhythms, integrating signals from nutrient sensors to facilitate synchronizing peak foraging behaviour and metabolic efficiency with nutrient availability. To dissect the functions of MC3Rs expressed in hypothalamic and extra-hypothalamic structures, we inserted a ‘lox-stop-lox’ (TB) sequence into the Mc3r gene. Mc3rTB/TB mice recapitulate the phenotype reported for Mc3r−/− mice: increased adiposity, accelerated diet-induced obesity and attenuated FAA. The ventromedial hypothalamus exhibits high levels of Mc3r expression; however, restoring the expression of the LoxTB Mc3r allele in this nucleus did not restore FAA. However, a surprising outcome came from studies using Nestin-Cre to restore the expression of the LoxTB Mc3r allele in the nervous system. These data suggest that ‘non-neural’ MC3Rs have a role in the defence of body weight. Future studies examining the homeostatic functions of MC3Rs should therefore consider actions outside the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Garfield AS, Lam DD, Marston OJ, Przydzial MJ, Heisler LK . Role of central melanocortin pathways in energy homeostasis. Trends Endocrinol Metab 2009; 20: 203–215.

    Article  CAS  PubMed  Google Scholar 

  2. O’Rahilly S . Human genetics illuminates the paths to metabolic disease. Nature 2009; 462: 307–314.

    Article  CAS  PubMed  Google Scholar 

  3. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A . Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 1998; 19: 155–157.

    Article  CAS  PubMed  Google Scholar 

  4. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S . A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 1998; 20: 111–112.

    Article  CAS  PubMed  Google Scholar 

  5. Vaisse C, Clement K, Guy-Grand B, Froguel P . A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    Article  CAS  PubMed  Google Scholar 

  6. Tao YX . Mutations in the melanocortin-3 receptor (MC3R) gene: impact on human obesity or adiposity. Curr Opin Investig Drugs 2010; 11: 1092–1096.

    CAS  PubMed  Google Scholar 

  7. MacNeil DJ, Howard AD, Guan X, Fong TM, Nargund RP, Bednarek MA et al. The role of melanocortins in body weight regulation: opportunities for the treatment of obesity. Eur J Pharmacol 2002; 450: 93–109.

    Article  CAS  PubMed  Google Scholar 

  8. Roselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB et al. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci USA 1993; 90: 8856–8860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Renquist BJ, Lippert RN, Sebag JA, Ellacott KL, Cone RD . Physiological roles of the melanocortin-3 receptor. Eur J Pharmacol 2011; 660: 13–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mountjoy KG . Distribution and function of melanocortin receptors within the brain. Adv Exp Med Biol 2011; 681: 29–48.

    Article  Google Scholar 

  11. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J et al. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141: 3518–3521.

    Article  CAS  PubMed  Google Scholar 

  12. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H et al. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 2000; 26: 97–102.

    Article  CAS  PubMed  Google Scholar 

  13. Begriche K, Marston OJ, Rossi J, Burke LK, McDonald P, Heisler LK et al. Melanocortin-3 receptors are involved in adaptation to restricted feeding. Genes Brain Behav 2012; 11: 291–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Begriche K, Sutton GM, Butler AA . Homeostastic and non-homeostatic functions of melanocortin-3 receptors in the control of energy balance and metabolism. Physiol Behav 2011; 104: 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Begriche K, Levasseur PR, Zhang J, Rossi J, Skorupa D, Solt LA et al. Genetic dissection of the functions of the melanocortin-3 receptor, a seven-transmembrane g-protein coupled receptor, suggests roles for central and peripheral receptors in energy homeostasis. J Biol Chem 2011; 286: 40771–40781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sutton GM, Begriche K, Kumar KG, Gimble JM, Perez-Tilve D, Nogueiras R et al. Central nervous system melanocortin-3 receptors are required for synchronizing metabolism during entrainment to restricted feeding during the light cycle. FASEB J 2010; 24: 862–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sutton GM, Perez-Tilve D, Nogueiras R, Fang J, Kim JK, Cone RD et al. The melanocortin-3 receptor is required for entrainment to meal intake. J Neurosci 2008; 28: 12946–12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar KG, Sutton GM, Dong JZ, Roubert P, Plas P, Halem HA et al. Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides 2009; 30: 1892–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cone RD . Anatomy and regulation of the central melanocortin system. Nat Neurosci 2005; 8: 571–578.

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ et al. 5-HT2CRs expressed by pro-opiomelanocortin neurons regulate energy homeostasis. Neuron 2008; 60: 582–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heisler LK, Jobst EE, Sutton GM, Zhou L, Borok E, Thornton-Jones Z et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron 2006; 51: 239–249.

    Article  CAS  PubMed  Google Scholar 

  22. Heisler LK, Cowley MA, Kishi T, Tecott LH, Fan W, Low MJ et al. Central serotonin and melanocortin pathways regulating energy homeostasis. Ann N Y Acad Sci 2003; 994: 169–174.

    Article  CAS  PubMed  Google Scholar 

  23. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 2001; 411: 480–484.

    Article  CAS  PubMed  Google Scholar 

  24. Hill JW, Williams KW, Ye C, Luo J, Balthasar N, Coppari R et al. Acute effects of leptin require PI3K signaling in hypothalamic proopiomelanocortin neurons in mice. J Clin Invest 2008; 118: 1796–1805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheung CC, Clifton DK, Steiner RA . Proopiomelanocortin neurons are direct targets for leptin in the hypothalamus. Endocrinology 1997; 138: 4489–4492.

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P et al. Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 1997; 46: 2119–2123.

    Article  CAS  PubMed  Google Scholar 

  27. Tung YC, Piper SJ, Yeung D, O’Rahilly S, Coll AP . A comparative study of the central effects of specific proopiomelancortin (POMC)-derived melanocortin peptides on food intake and body weight in POMC null mice. Endocrinology 2006; 147: 5940–5947.

    Article  CAS  PubMed  Google Scholar 

  28. Adan RA, Cone RD, Burbach JP, Gispen WH . Differential effects of melanocortin peptides on neural melanocortin receptors. Mol Pharmacol 1994; 46: 1182–1190.

    CAS  PubMed  Google Scholar 

  29. Hahn TM, Breininger JF, Baskin DG, Schwartz MW . Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat Neurosci 1998; 1: 271–272.

    Article  CAS  PubMed  Google Scholar 

  30. Luquet S, Perez FA, Hnasko TS, Palmiter RD . NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science 2005; 310: 683–685.

    Article  CAS  PubMed  Google Scholar 

  31. Gropp E, Shanabrough M, Borok E, Xu AW, Janoschek R, Buch T et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat Neurosci 2005; 8: 1289–1291.

    Article  CAS  PubMed  Google Scholar 

  32. Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C et al. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 1999; 23: 775–786.

    Article  CAS  PubMed  Google Scholar 

  33. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG et al. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein. Endocrinology 2004; 145: 2607–2612.

    Article  CAS  PubMed  Google Scholar 

  34. Bewick GA, Gardiner JV, Dhillo WS, Kent AS, White NE, Webster Z et al. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. FASEB J 2005; 19: 1680–1682.

    Article  CAS  PubMed  Google Scholar 

  35. Ollmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278: 135–138.

    Article  CAS  PubMed  Google Scholar 

  36. Shutter JR, Graham M, Kinsey AC, Scully S, Luthy R, Stark KL . Hypothalamic expression of ART, a novel gene related to agouti, is up-regulated in obese and diabetic mutant mice. Genes Dev 1997; 11: 593–602.

    Article  CAS  PubMed  Google Scholar 

  37. Mizuno TM, Mobbs CV . Hypothalamic agouti-related protein messenger ribonucleic acid is inhibited by leptin and stimulated by fasting. Endocrinology 1999; 140: 814–817.

    Article  CAS  PubMed  Google Scholar 

  38. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM et al. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest 2007; 117: 3475–3488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Small CJ, Kim MS, Stanley SA, Mitchell JR, Murphy K, Morgan DG et al. Effects of chronic central nervous system administration of agouti-related protein in pair-fed animals. Diabetes 2001; 50: 248–254.

    Article  CAS  PubMed  Google Scholar 

  40. Small CJ, Liu YL, Stanley SA, Connoley IP, Kennedy A, Stock MJ et al. Chronic CNS administration of Agouti-related protein (Agrp) reduces energy expenditure. Int J Obes Relat Metab Disord 2003; 27: 530–533.

    Article  CAS  PubMed  Google Scholar 

  41. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab 2007; 5: 181–194.

    Article  CAS  PubMed  Google Scholar 

  42. Konner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X et al. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab 2007; 5: 438–449.

    Article  CAS  PubMed  Google Scholar 

  43. Lin HV, Plum L, Ono H, Gutierrez-Juarez R, Shanabrough M, Borok E et al. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in AgRP and POMC neurons. Diabetes 2010; 59: 337–346.

    Article  CAS  PubMed  Google Scholar 

  44. Williams KW, Margatho LO, Lee CE, Choi M, Lee S, Scott MM et al. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J Neurosci 2010; 30: 2472–2479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konner AC, Bruning JC . Selective insulin and leptin resistance in metabolic disorders. Cell Metab 2012; 16: 144–152.

    Article  CAS  PubMed  Google Scholar 

  46. Williams KW, Elmquist JK . From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat Neurosci 2012; 15: 1350–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cone RD . Studies on the physiological functions of the melanocortin system. Endocr Rev 2006; 27: 736–749.

    Article  CAS  PubMed  Google Scholar 

  48. Breit A, Buch TR, Boekhoff I, Solinski HJ, Damm E, Gudermann T . Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol Cell Endocrinol 2011; 331: 232–240.

    Article  CAS  PubMed  Google Scholar 

  49. Rediger A, Piechowski CL, Habegger K, Gruters A, Krude H, Tschop MH et al. MC4R dimerization in the paraventricular nucleus and GHSR/MC3R heterodimerization in the arcuate nucleus: is there relevance for body weight regulation. Neuroendocrinology 2012; 95: 277–288.

    Article  CAS  PubMed  Google Scholar 

  50. Sutton GM, Trevaskis JL, Hulver MW, McMillan RP, Markward NJ, Babin MJ et al. Diet-genotype interactions in the development of the obese, insulin-resistant phenotype of C57BL/6J mice lacking melanocortin-3 or -4 receptors. Endocrinology 2006; 147: 2183–2196.

    Article  CAS  PubMed  Google Scholar 

  51. Butler AA . The melanocortin system and energy balance. Peptides 2006; 27: 281–290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Albarado DC, McClaine J, Stephens JM, Mynatt RL, Ye J, Bannon AW et al. Impaired coordination of nutrient intake and substrate oxidation in melanocortin-4 receptor knockout mice. Endocrinology 2004; 145: 243–252.

    Article  CAS  PubMed  Google Scholar 

  53. Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD . Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 2001; 4: 605–611.

    Article  CAS  PubMed  Google Scholar 

  54. Ste Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD . A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 2000; 97: 12339–12344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Balthasar N, Dalgaard LT, Lee CE, Yu J, Funahashi H, Williams T et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell 2005; 123: 493–505.

    Article  CAS  PubMed  Google Scholar 

  56. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK . Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003; 457: 213–235.

    Article  CAS  PubMed  Google Scholar 

  57. Liu H, Kishi T, Roseberry AG, Cai X, Lee CE, Montez JM et al. Transgenic mice expressing green fluorescent protein under the control of the melanocortin-4 receptor promoter. J Neurosci 2003; 23: 7143–7154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD . Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 1994; 8: 1298–1308.

    CAS  PubMed  Google Scholar 

  59. Rossi J, Balthasar N, Olson D, Scott M, Berglund E, Lee CE et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab 2011; 13: 195–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rahmouni K, Haynes WG, Morgan DA, Mark AL . Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin. J Neurosci 2003; 23: 5998–6004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen AS, Metzger JM, Trumbauer ME, Guan XM, Yu H, Frazier EG et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res 2000; 9: 145–154.

    Article  CAS  PubMed  Google Scholar 

  62. Lechan RM, Fekete C . Role of melanocortin signaling in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Peptides 2006; 27: 310–325.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang Y, Kilroy GE, Henagan TM, Prpic-Uhing V, Richards WG, Bannon AW et al. Targeted deletion of melanocortin receptor subtypes 3 and 4, but not CART, alters nutrient partitioning and compromises behavioral and metabolic responses to leptin. FASEB J 2005; 19: 1482–1491.

    Article  CAS  PubMed  Google Scholar 

  64. Trevaskis JL, Gawronska-Kozak B, Sutton GM, McNeil M, Stephens JM, Smith SR et al. Role of adiponectin and inflammation in insulin resistance of Mc3r and Mc4r knockout mice. Obesity (Silver Spring) 2007; 15: 2664–2672.

    Article  CAS  Google Scholar 

  65. Ellacott KL, Murphy JG, Marks DL, Cone RD . Obesity-induced inflammation in white adipose tissue is attenuated by loss of melanocortin-3 receptor signaling. Endocrinology 2007; 148: 6186–6194.

    Article  CAS  PubMed  Google Scholar 

  66. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131–141.

    Article  CAS  PubMed  Google Scholar 

  67. Perez-Tilve D, Hofmann SM, Basford J, Nogueiras R, Pfluger PT, Patterson JT et al. Melanocortin signaling in the CNS directly regulates circulating cholesterol. Nat Neurosci 2010##

  68. Stephan FK . The ‘other’ circadian system: food as a Zeitgeber. J Biol Rhythms 2002; 17: 284–292.

    Article  PubMed  Google Scholar 

  69. Mistlberger RE . Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci 2009; 30: 1718–1729.

    Article  PubMed  Google Scholar 

  70. Choi S, Wong LS, Yamat C, Dallman MF . Hypothalamic ventromedial nuclei amplify circadian rhythms: do they contain a food-entrained endogenous oscillator? J Neurosci 1998; 18: 3843–3852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gooley JJ, Schomer A, Saper CB . The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 2006; 9: 398–407.

    Article  CAS  PubMed  Google Scholar 

  72. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J . Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J Neurosci 2003; 23: 10691–10702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fuller PM, Lu J, Saper CB . Differential rescue of light- and food-entrainable circadian rhythms. Science 2008; 320: 1074–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M . The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc Natl Acad Sci USA 2006; 103: 12150–12155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Acosta-Galvan G, Yi CX, van der Vliet J, Jhamandas JH, Panula P, Angeles-Castellanos M et al. Interaction between hypothalamic dorsomedial nucleus and the suprachiasmatic nucleus determines intensity of food anticipatory behavior. Proc Natl Acad Sci USA 2011; 108: 5813–5818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mistlberger RE . Neurobiology of food anticipatory circadian rhythms Physiol Behav 2011; 4: 535–545.

    Article  CAS  Google Scholar 

  77. Bass J, Takahashi JS . Circadian integration of metabolism and energetics. Science 2010; 330: 1349–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005; 308: 1043–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sahar S, Sassone-Corsi P . Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 2009; 9: 886–896.

    Article  CAS  PubMed  Google Scholar 

  80. Scheer FA, Hilton MF, Mantzoros CS, Shea SA . Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA 2009; 106: 4453–4458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab 2008; 8: 468–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al. Autophagy regulates lipid metabolism. Nature 458: 1131–1135.

  83. Renquist BJ, Murphy JG, Larson EA, Olsen D, Klein RF, Ellacott KL et al. Melanocortin-3 receptor regulates the normal fasting response. Proc Natl Acad Sci USA 2012; 109: E1489–E1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. LeSauter J, Hoque N, Weintraub M, Pfaff DW, Silver R . Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci USA 2009; 106: 13582–13587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blum ID, Patterson Z, Khazall R, Lamont EW, Sleeman MW, Horvath TL et al. Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience 2009; 164: 351–359.

    Article  CAS  PubMed  Google Scholar 

  86. Davis JF, Choi DL, Clegg DJ, Benoit SC . Signaling through the ghrelin receptor modulates hippocampal function and meal anticipation in mice. Physiol Behav 2011; 103: 39–43.

    Article  CAS  PubMed  Google Scholar 

  87. Verhagen LA, Egecioglu E, Luijendijk MC, Hillebrand JJ, Adan RA, Dickson SL . Acute and chronic suppression of the central ghrelin signaling system reveals a role in food anticipatory activity. Eur Neuropsychopharmacol 2011; 21: 384–392.

    Article  CAS  PubMed  Google Scholar 

  88. Ribeiro AC, Ceccarini G, Dupre C, Friedman JM, Pfaff DW, Mark AL . Contrasting effects of leptin on food anticipatory and total locomotor activity. PLoS One 2011; 6: e23364##

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bouret SG, Draper SJ, Simerly RB . Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 2004; 304: 108–110.

    Article  CAS  PubMed  Google Scholar 

  90. Galichet C, Lovell-Badge R, Rizzoti K . Nestin-Cre mice are affected by hypopituitarism, which is not due to significant activity of the transgene in the pituitary gland. PLoS One 2010; 5: e11443.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Kim KW, Zhao L, Donato Jr J, Kohno D, Xu Y, Elias CF et al. Steroidogenic factor 1 directs programs regulating diet-induced thermogenesis and leptin action in the ventral medial hypothalamic nucleus. Proc Natl Acad Sci USA 2011; 108: 10673–10678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Briancon N, McNay DE, Maratos-Flier E, Flier JS . Combined neural inactivation of suppressor of cytokine signaling-3 and protein-tyrosine phosphatase-1B reveals additive, synergistic, and factor-specific roles in the regulation of body energy balance. Diabetes 2010; 59: 3074–3084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Horton JD, Goldstein JL, Brown MS . SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109: 1125–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ma D, Li S, Molusky MM, Lin JD . Circadian autophagy rhythm: a link between clock and metabolism? Trends Endocrinol Metab 2012; 23: 319–325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research described in this article has been supported by the NIDDK (DK0730189) and TSRI-Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Butler.

Ethics declarations

Competing interests

RAK has received grant support from Zafgen. AAB has received grant support through a Novo Nordisk Diabetes Innovation Award. The remaining authors declare no conflict of interest.

Additional information

This article is published as part of a supplement sponsored by the Université Laval's Research Chair in Obesity in an effort to inform the public on the causes, consequences, treatments, and prevention of obesity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girardet, C., Begriche, K., Ptitsyn, A. et al. Unravelling the mysterious roles of melanocortin-3 receptors in metabolic homeostasis and obesity using mouse genetics. Int J Obes Supp 4 (Suppl 1), S37–S44 (2014). https://doi.org/10.1038/ijosup.2014.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2014.10

Keywords

This article is cited by

Search

Quick links