Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative Biology

Reduced circulating levels of sTWEAK are associated with NAFLD and may affect hepatocyte triglyceride accumulation

Abstract

Context:

Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome and is strongly associated with obesity, dyslipidaemia and altered glucose regulation. Previous data demonstrated that low circulating levels of tumour necrosis factor weak inducer of apoptosis (sTWEAK) were associated with obesity, diabetes and insulin resistance, all traits associated with an increased risk of NALFD. Circulating sTWEAK levels are expected to be reduced in the presence of NAFLD.

Objective:

We aimed to explore the relationship between NAFLD and circulating sTWEAK levels in obese patients, and to evaluate the effect of sTWEAK on hepatocyte triglyceride accumulation.

Design setting and patients:

This is an observational case–control study performed in n=112 severely obese patients evaluated for NAFLD by abdominal ultrasound and n=32 non-obese patients without steatosis. Serum sTWEAK concentrations were measured by ELISA. Multivariable analyses were performed to determine the independent predictors of NAFLD. We analysed TWEAK and Fn14 protein expression in liver biopsies by western blotting and immunohistochemistry. An immortalized primary human hepatocyte cell line (HHL) was used to evaluate the effect of sTWEAK on triglyceride accumulation.

Results:

We observed a reduction in serum circulating sTWEAK concentrations with the presence of liver steatosis. On multivariable analysis, lower sTWEAK concentrations were independently associated with the presence of NAFLD (odds ratio (OR)=0.023; 95% confidence interval: 0.001–0.579; P<0.022). In human hepatocytes, sTWEAK administration reduced fat accumulation as demonstrated by the reduction in palmitic acid-induced accumulation of triglyceride and the decreased expression of cluster of differentiation 36 (CD36) and perilipin 1 and 2 (PLIN1 and PLIN2) genes.

Conclusions:

Decreased sTWEAK concentrations are independently associated with the presence of NAFLD. This is concordant with the observation that TWEAK reduces lipid accumulation in human liver cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Browning JD, Horton JD . Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114: 147–152.

    Article  CAS  Google Scholar 

  2. Farrell GC, Larter CZ . Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006; 43: S99–S112.

    Article  CAS  Google Scholar 

  3. Perry RJ, Samuel VT, Petersen KF, Shulman GI . The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510: 84–91.

    Article  CAS  Google Scholar 

  4. Winkles JA . The TWEAK-Fn1 4 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov 2008; 7: 411–425.

    Article  CAS  Google Scholar 

  5. Moreno JA, Muñoz-Garcí a B, Martín-Ventura JL, Madrigal-Matute J, Orbe J, Páramo JA et al. The CD163-expressing macrophages recognize and internalize TWEAK: potential consequences in atherosclerosis. Atherosclerosis 2009; 207: 103–110.

    Article  CAS  Google Scholar 

  6. Maymó-Masip E, Fernández-Veledo S, Garcia Españ a A, Vázquez-Carballo A, Tinahones FJ, García-Fuentes E et al. The rise of soluble TWEAK levels in severely obese subjects after bariatric surgery may affect adipocyte-cytokine production induced by TNFα. J Clin Endocrinol Metab 2013; 98: E1323–E1333.

    Article  Google Scholar 

  7. Vázquez-Carballo A, Ceperuelo-Mallafré V, Chacón MR, Maymó-Masip E, Lorenzo M, Porras et al. TWEAK prevents TNF-α-induced insulin resistance through PP2A activation in human adipocytes. Am J Physiol Endocrinol Metab 2013; 305: E101–E112.

    Article  Google Scholar 

  8. Vendrell J, Chacón MR . TWEAK: a new player in obesity and diabetes. Front Immunol 2013; 4: 488.

    Article  Google Scholar 

  9. Simón-Muela I, Llauradó G, Chacón MR, Olona M, Näf S, Maymó-Masip E et al. Reduced circulating levels of TWEAK are associated with gestational diabetes mellitus. Eur J Clin Invest 2015; 45: 27–35.

    Article  Google Scholar 

  10. Llauradó G, González-Clemente J-M, Maymó-Masip E, Subías D, Vendrell J, Chacón MR . Serum levels of TWEAK and scavenger receptor CD163 in type 1 diabetes mellitus: relationship with cardiovascular risk factors. a case-control study. PLoS One 2012; 7: e43919.

    Article  Google Scholar 

  11. Kralisch S, Ziegelmeier M, Bachmann A, Seeger J, Lössner U, Blüher M et al. Serum levels of the atherosclerosis biomarker sTWEAK are decreased in type 2 diabetes and end-stage renal disease. Atherosclerosis 2008; 199: 440–444.

    Article  CAS  Google Scholar 

  12. Díaz-López A, Chacón MR, Bulló M, Maymó-Masip E, Martínez-González MA, Estruch R et al. Serum sTWEAK concentrations and risk of developing type 2 diabetes in a high cardiovascular risk population: a nested case-control study. J Clin Endocrinol Metab 2013; 98: 3482–3490.

    Article  Google Scholar 

  13. Díaz-López A, Bulló M, Chacón MR, Estruch R, Vendrell J, Díez-Espino J et al. Reduced circulating sTWEAK levels are associated with metabolic syndrome in elderly individuals at high cardiovascular risk. Cardiovasc Diabetol 2014; 13: 51.

    Article  Google Scholar 

  14. Jakubowski A, Ambrose C, Parr M, Lincecum JM, Wang MZ, Zheng TS et al. TWEAK induces liver progenitor cell proliferation. J Clin Invest 2005; 115: 2330–2340.

    Article  CAS  Google Scholar 

  15. Dwyer BJ, Olynyk JK, Ramm GA, Tirnitz-Parker JE . TWEAK and LTβ signaling during chronic liver disease. Front Immunol 2014; 5: 39.

    Article  Google Scholar 

  16. Kazantzis M, Stahl A . Fatty acid transport proteins, implications in physiology and disease. Biochim Biophys Acta 2012; 1821: 852–857.

    Article  CAS  Google Scholar 

  17. Glatz JFC, Luiken JJFP, Bonen A . Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev 2010; 90: 367–417.

    Article  CAS  Google Scholar 

  18. Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SLM, Han X-X et al. Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 2004; 63: 245–249.

    Article  CAS  Google Scholar 

  19. Zhou J, Febbraio M, Wada T, Zhai Y, Kuruba R, He J et al. Hepatic fatty acid transporter Cd36 is a common target of LXR, PXR, and PPARgamma in promoting steatosis. Gastroenterology 2008; 134: 556–567.

    Article  CAS  Google Scholar 

  20. Semple RK, Chatterjee VKK, Rahilly SO . Review series PPARγ and human metabolic disease. J Clin Invest 2006; 116: 581–589.

    Article  CAS  Google Scholar 

  21. Lee JH, Zhou J, Xie W . PXR and LXR in hepatic steatosis: a new dog and an old dog with new tricks. Mol Pharm 2008; 5: 60–66.

    Article  CAS  Google Scholar 

  22. Strauss S, Gavish E, Gottlieb P, Katsnelson L . Interobserver and intraobserver variability in the sonographic assessment of fatty liver. Am J Roentgenol 2007; 189: 1449.

    Article  Google Scholar 

  23. Brunt EM . Nonalcoholic steatohepatitis: definition and pathology. Semin Liver Dis 2001; 21: 3–16.

    Article  CAS  Google Scholar 

  24. Chacón MR, Richart C, Gómez JM, Megí a A, Vilarrasa N, Fernández-Real JM et al. Expression of TWEAK and its receptor Fn14 in human subcutaneous adipose tissue. Relationship with other inflammatory cytokines in obesity. Cytokine 2006; 33: 129–137.

    Article  Google Scholar 

  25. Vendrell J, Maymó-Masip E, Tinahones F, García-Españ a A, Megia A, Caubet E et al. Tumor necrosis-like weak inducer of apoptosis as a proinflammatory cytokine in human adipocyte cells: up-regulation in severe obesity is mediated by inflammation but not hypoxia. J Clin Endocrinol Metab 2010; 95: 2983–2992.

    Article  CAS  Google Scholar 

  26. Clayton RF, Rinaldi A, Kandyba EE, Edward M, Willberg C, Klenerman P et al. Liver cell lines for the study of hepatocyte functions and immunological response. Liver Int 2005; 25: 389–402.

    Article  Google Scholar 

  27. Willberg CB, Ward SM, Clayton RF, Naoumov NV, McCormick C, Proto S et al. Protection of hepatocytes from cytotoxic T cell mediated killing by interferon-alpha. PLoS One 2007; 2: e791.

    Article  Google Scholar 

  28. Luo Y, Rana P, Will Y . Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells. Toxicol Appl Pharmacol 2012; 261: 172–180.

    Article  CAS  Google Scholar 

  29. Olagnier D, Lavergne R-A, Meunier E, Lefèvre L, Dardenne C, Aubouy et al. Nrf2, a PPARγ alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria. PLoS Pathog 2011; 7: e1002254.

    Article  CAS  Google Scholar 

  30. Hong C, Walczak R, Dhamko H, Bradley MN, Marathe C, Boyadjian R et al. Constitutive activation of LXR in macrophages regulates metabolic and inflammatory gene expression: identification of ARL7 as a direct target. J Lipid Res 2011; 52: 531–539.

    Article  CAS  Google Scholar 

  31. Larsen TM, Toubro S, Astrup A . PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord 2003; 27: 147–161.

    Article  CAS  Google Scholar 

  32. Yki-Järvinen H . Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol 2014; 2: 901–910.

    Article  Google Scholar 

  33. Kazankov K, Tordjman J, Møller HJ, Vilstrup H, Poitou C, Bedossa P et al. Macrophage activation marker soluble CD163 and non-alcoholic fatty liver disease in morbidly obese patients undergoing bariatric surgery. J Gastroenterol Hepatol 2015; 30: 1293–1300.

    Article  CAS  Google Scholar 

  34. Joshi-Barve S, Barve SS, Amancherla K, Gobejishvili L, Hill D, Cave M et al. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology 2007; 46: 823–830.

    Article  CAS  Google Scholar 

  35. Shafritz DA . To TWEAK, or not to TWEAK: that is the question. Hepatology 2010; 52: 13–15.

    Article  CAS  Google Scholar 

  36. Fausto N . Tweaking liver progenitor cells. Nat Med 2005; 11: 1053–1054.

    Article  CAS  Google Scholar 

  37. Steneberg P, Sykaras AG, Backlund F, Straseviciene J, Soderstrom I, Edlund H . Hyperinsulinemia enhances hepatic expression of the fatty acid transporter Cd36 and provokes hepatosteatosis and hepatic insulin resistance. J Biol Chem 2015; 290: 19034–19043.

    Article  CAS  Google Scholar 

  38. Koonen DPY, Jacobs L, Febbraio M, Young ME, Soltys CM . Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity. Diabetes 2007; 56: 2863–2871.

    Article  CAS  Google Scholar 

  39. Miquilena-Colina ME, Lima-Cabello E, Sánchez-Campos S, García-Mediavilla MV, Fernández-Bermejo M, Lozano-Rodríguez T et al. Hepatic fatty acid translocase CD36 upregulation is associated with insulin resistance, hyperinsulinaemia and increased steatosis in non-alcoholic steatohepatitis and chronic hepatitis C. Gut 2011; 60: 1394–1402.

    Article  CAS  Google Scholar 

  40. Carr RM, Peralta G, Yin X, Ahima RS . Absence of perilipin 2 prevents hepatic steatosis, glucose intolerance and ceramide accumulation in alcohol-fed mice. PLoS One 2014; 9: e97118.

    Article  Google Scholar 

  41. Okumura T . Role of lipid droplet proteins in liver steatosis. J Physiol Biochem 2011; 67: 629–636.

    Article  CAS  Google Scholar 

  42. Zhao Y-P, Li L, Ma J-P, Chen G, Bai J-H . LXRα gene downregulation by lentiviral-based RNA interference enhances liver function after fatty liver transplantation in rats. Hepatobiliary Pancreat Dis Int 2015; 14: 386–393.

    Article  Google Scholar 

  43. Labrie M, Lalonde S, Najyb O, Thiery M, Daneault C, Des Rosiers C et al. Apolipoprotein D transgenic mice develop hepatic steatosis through activation of PPARγ and fatty acid uptake. PLoS One 2015; 10: e0130230.

    Article  Google Scholar 

  44. Bohte AE, Van Werven JR, Bipat S, Stoker J . The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 2011; 21: 87–97.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by projects from the Fondo de Investigación Sanitaria (FIS): PI 11/00049 (MRC), PI14/00465 (MRC) and by CB07/08/0012 from CIBERDEM (Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas). All projects from FIS are co-financed by the European Regional Development Fund (ERDF). Dr MR Chacón is supported by the Research Stabilization Programme of the Instituto de Salud Carlos III (ISCIII) co-financed by Institut Català de Salut (ICS) in Catalonia. Dr Rodriguez is financed by a fellowship 'Juan de la Cierva' from the Spanish Ministry of Science and Innovation (JCI-2011-11488). Dr Llauradó was financed by a fellowship 'Rio Hortega' from the Instituto de Salud Carlos III (ISCIII).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Chacón.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano-Bartolomé, J., Llauradó, G., Rodriguez, M. et al. Reduced circulating levels of sTWEAK are associated with NAFLD and may affect hepatocyte triglyceride accumulation. Int J Obes 40, 1337–1345 (2016). https://doi.org/10.1038/ijo.2016.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.73

Search

Quick links