Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Leptin-induced mitochondrial fusion mediates hepatic lipid accumulation

Abstract

Background:

Leptin alleviates metabolic conditions such as insulin resistance and obesity, although the precise mechanism of action is unclear. Mitochondrial fusion/fission states affect energy balance, but the association between mitochondrial fusion and lipid metabolism is also unknown. The aim of this study was to determine whether mitochondrial fusion/fission state regulates lipid accumulation and to understand the role of leptin in mitochondrial function and its mechanism of action in metabolic regulation.

Methods:

Primary mouse hepatocytes were isolated from C57BL/6J mice and treated with leptin (25 ng ml−1) for 3 days before determinations of mitochondrial morphology and fatty acid accumulation. Hyperglycemia in C57BL/6J mice was induced by providing a 30% fructose-rich diet (FRD) for 6 months, followed by intraperitoneal injections of leptin (1 mg kg−1 per body weight) for 6 weeks (twice per week).

Results:

Leptin triggered mitochondrial fusion and alleviated high glucose-induced fatty acid accumulation in primary hepatocytes by promoting mitochondrial fusion-associated transcription factor peroxisome proliferative-activated receptor-α and co-activator peroxisome proliferative-activated receptor-γ co-activator (PGC)-1α. In turn, these activate the fusion protein mitofusin 1 (Mfn-1). RNA silencing of Mfn-1 or PGC-1 blocked the inhibitory effect of leptin. Leptin treatment also elevated liver Mfn-1 and PGC-1α and improved lipid profiles in FRD mice.

Conclusions:

Mitochondrial fusion has a critical role in alleviating hepatic fatty acid accumulation. Leptin switches mitochondrial morphology via a PGC-1α-dependent pathway to improve hyperlipidemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tile H, Moschen AR . Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006; 6: 772–782.

    Article  Google Scholar 

  2. Bjorbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS . Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1998; 1: 619–625.

    Article  CAS  PubMed  Google Scholar 

  3. Burgos-Ramos E, Chowen JA, Arilla-Ferreiro E, Canelles S, Argente J, Barrios V . Chronic central leptin infusion modifies the response to acute central insulin injection by reducing the interaction of the insulin receptor with IRS2 and increasing its association with SOCS3. J Neurochem 2011; 117: 175–185.

    Article  CAS  PubMed  Google Scholar 

  4. Hedbacker K, Birsoy K, Wysocki RW, Asilmaz E, Ahima RS, Farooqi IS et al. Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cell Metab 2010; 11: 11–22.

    Article  CAS  PubMed  Google Scholar 

  5. Amitani M, Asakawa A, Amitani H, Inui A . The role of leptin in the control of insulin-glucose axis. Front Neurosci 2013; 7: 51.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Su H, Liang L, Carter-Su C, Rui L . Glucose enhances leptin signaling through modulation of AMPK activity. PLoS One 2012; 7: e31636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hill JW, Xu Y, Preitner F, Fukuda M, Cho YR, Luo J et al. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 2009; 150: 4874–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marino JS, Xu Y, Hill JW . Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 2011; 22: 275–285.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med 2004; 10: 168–174.

    Article  CAS  PubMed  Google Scholar 

  10. Sakai M, Matsumoto M, Tujimura T, Yongheng C, Noguchi T, Inagaki K et al. CITED2 links hormonal signaling to PGC-1alpha acetylation in the regulation of gluconeogenesis. Nat Med 2012; 18: 612–618.

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez A, Becerril S, Mendez-Gimenez L, Ramirez B, Sainz B, Catalan V et al. Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int J Obes (Lond) 2015; 39: 397–407.

    Article  CAS  Google Scholar 

  12. Chen W, Wang Q, Bai L, Chen W, Wang X, Tellez CS et al. RIP1 maintains DNA integrity and cell proliferation by regulating PGC-1alpha-mediated mitochondrial oxidative phosphorylation and glycolysis. Cell Death Differ 2014; 21: 1061–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schneeberger M, Dietrich MO, Sebastian D, Imbernon M, Castano C, Garcia A et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 2013; 155: 172–187.

    Article  CAS  PubMed  Google Scholar 

  14. Martinez-Abundis E, Rajapurohitam V, Haist JV, Gan XT, Karmazyn M . The obesity-related peptide leptin sensitizes cardiac mitochondria to calcium-induced permeability transition pore opening and apoptosis. PLoS One 2012; 7: e41612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. del Campo A, Parra V, Vasquez-Trincado C, Gutierrez T, Morales PE, Lopez-Crisosto C et al. Mitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake. Am J Physiol Endocrinol Metab 2014; 306: E1–E13.

    Article  CAS  PubMed  Google Scholar 

  16. Matsumoto M, Han S, Kitamura T, Accili D . Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 2006; 116: 2464–2472.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nunnari J, Suomalainen A . Mitochondria: in sickness and in health. Cell 2012; 148: 1145–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verdejo HE, Del Campo A, Troncoso R, Gutierrez T, Toro B, Quiroga C et al. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep 2012; 14: 532–539.

    Article  CAS  PubMed  Google Scholar 

  19. Hernandez-Alvarez MI, Thabit H, Burns N, Shah S, Brema I, Hatunic M et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal muscle PGC-1(alpha)/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care 2010; 33: 645–651.

    Article  CAS  PubMed  Google Scholar 

  20. Zorzano A, Hernandez-Alvarez MI, Palacin M, Mingrone G . Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1alpha or PGC-1beta and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim Biophys Acta 2010; 1797: 1028–1033.

    Article  CAS  PubMed  Google Scholar 

  21. Sebastian D, Hernandez-Alvarez MI, Segales J, Sorianello E, Munoz JP, Sala D et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci USA 2012; 109: 5523–5528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Galloway CA, Lee H, Brookes PS, Yoon Y . Decreasing mitochondrial fission alleviates hepatic steatosis in a muring model of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2014; 307: G632–G641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huynh FK, Neumann UH, Wang Y, Rodrigues B, Kieffer TJ, Covey SD . A role for hepatic leptin signaling in lipid metabolism via altered very low density lipoprotein composition and liver lipase activity in mice. Hepatology 2013; 57: 543–554.

    Article  CAS  PubMed  Google Scholar 

  24. Hsu WH, Chen TH, Lee BH, Hsu YW, Pan TM . Monascin and ankaflavin act as natural AMPK activators with PPARalpha agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem Toxicol 2014; 64: 94–103.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao L, Zou X, Feng Z, Luo C, Liu J, Li H et al. Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats. Exp Gerontol 2014; 56: 3–12.

    Article  CAS  PubMed  Google Scholar 

  26. Kita T, Nishida H, Shibata H, Niimi S, Higuti T, Arakaki N . Possible role of mitochondrial remodelling on cellular triacylglycerol accumulation. J Biochem 2009; 146: 787–796.

    Article  CAS  PubMed  Google Scholar 

  27. Holmstrom MH, Tom RZ, Bjornholm M, Garcia-Roves PM, Zierath JR . Effect of leptin treatment on mitochondrial function in obese leptin-deficient ob/ob mice. Metabolism 2013; 62: 1258–1267.

    Article  CAS  PubMed  Google Scholar 

  28. Yu T, Wang L, Lee H, O’Brien DK, Bronk SF, Gores GJ et al. Decreasing mitochondrial fission prevents cholestatic liver injury. J Biol Chem 2014; 289: 34074–34088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab 2007; 5: 345–356.

    Article  CAS  PubMed  Google Scholar 

  30. Szczepanek K, Chen Q, Larner AC, Lesnefsky EJ . Cytoprotection by the modulation of mitochondrial electron transport chain: the emerging role of mitochondrial STAT3. Mitochondrion 2012; 12: 180–189.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T-M Pan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsu, WH., Lee, BH. & Pan, TM. Leptin-induced mitochondrial fusion mediates hepatic lipid accumulation. Int J Obes 39, 1750–1756 (2015). https://doi.org/10.1038/ijo.2015.120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.120

This article is cited by

Search

Quick links