Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative Biology

Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β-cells

Abstract

Background:

The nuclear protein high-mobility group box 1 (HMGB1) can be passively released by necrotic cells or secreted actively by several cell types to regulate immune and inflammatory responses, as well as tissue remodeling. We herein aimed to characterize the effect of insulin resistance on HMGB1 in adipose tissue and to examine its potential role as a metabolic regulator in β-pancreatic cells.

Design:

Plasma HMGB1 concentration and adipose HMGB1 expression were assessed in relation to obesity and insulin resistance. Cultured adipocytes from lean and obese patients were used to investigate the intracellular distribution and factors regulating HMGB1 release, as well as to test its effects on adipogenesis and lipid metabolism. A regulatory role for HMGB1 in insulin secretion was also investigated.

Results:

Circulating HMGB1 was positively associated with body mass index, while adipose HMGB1 mRNA levels correlated with the expression of inflammatory markers. Insulin resistance modified the intracellular distribution of HMGB1 in human adipocytes, with HMGB1 being predominantly nuclear in lean and obese normoglycemic individuals while localized to the cytosol in obese patients with type 2 diabetes. Adipocytes from lean individuals exposed to conditioned media from lipopolysaccharide-stimulated macrophages induced HMGB1 redistribution to the cytoplasm and release. HMGB1 treatment had no effect on differentiation and lipid metabolism in adipocytes. However, HMGB1, whose circulating levels correlated with postload insulin concentration, increased both insulin release and intracellular Ca2+ concentration in INS-1 cells.

Conclusions:

These findings show, for the first time, that HMGB1 expression and release by human adipocytes is altered by inflammatory conditions as those imposed by obesity and insulin resistance. Our data reveal a novel role for HMGB1 as a stimulatory factor of insulin secretion of β-pancreatic cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bustin M, Reeves R . High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Prog Nucleic Acid Res Mol Biol 1996; 54: 35–100.

    Article  CAS  Google Scholar 

  2. Liu Y, Prasad R, Wilson SH . HMGB1: roles in base excision repair and related function. Biochim Biophys Acta 2010; 1799: 119–130.

    Article  CAS  Google Scholar 

  3. Thomas JO, Stott K . H1 and HMGB1: modulators of chromatin structure. Biochem Soc Trans 2012; 40: 341–346.

    Article  CAS  Google Scholar 

  4. Kang R, Livesey KM, Zeh HJ 3rd, Lotze MT, Tang D . HMGB1 as an autophagy sensor in oxidative stress. Autophagy 2011; 7: 904–906.

    Article  Google Scholar 

  5. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P et al. Endogenous HMGB1 regulates autophagy. J Cell Biol 2010; 190: 881–892.

    Article  CAS  Google Scholar 

  6. Lotze MT, Tracey KJ . High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5: 331–342.

    Article  CAS  Google Scholar 

  7. Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A et al. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 2001; 20: 4337–4340.

    Article  CAS  Google Scholar 

  8. Yang D, Tewary P, de la Rosa G, Wei F, Oppenheim JJ . The alarmin functions of high-mobility group proteins. Biochim Biophys Acta 2010; 1799: 157–163.

    Article  CAS  Google Scholar 

  9. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 2003; 22: 5551–5560.

    Article  CAS  Google Scholar 

  10. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285: 248–251.

    Article  CAS  Google Scholar 

  11. Erlandsson Harris H, Andersson U . Mini-review: The nuclear protein HMGB1 as a proinflammatory mediator. Eur J Immunol 2004; 34: 1503–1512.

    Article  CAS  Google Scholar 

  12. Yang H, Wang H, Czura CJ, Tracey KJ . The cytokine activity of HMGB1. J Leukoc Biol 2005; 78: 1–8.

    Article  CAS  Google Scholar 

  13. Evankovich J, Cho SW, Zhang R, Cardinal J, Dhupar R, Zhang L et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem 2010; 285: 39888–39897.

    Article  CAS  Google Scholar 

  14. Fages C, Nolo R, Huttunen HJ, Eskelinen E, Rauvala H . Regulation of cell migration by amphoterin. J Cell Sci 2000; 113: 611–620.

    CAS  PubMed  Google Scholar 

  15. Peinado JR, Quiros PM, Pulido MR, Marino G, Martinez-Chantar ML, Vazquez-Martinez R et al. Proteomic profiling of adipose tissue from Zmpste24-/- mice, a model of lipodystrophy and premature aging, reveals major changes in mitochondrial function and vimentin processing. Mol Cell Proteomics 2011; 10: 1–16.

    Article  Google Scholar 

  16. Arrigo T, Chirico V, Salpietro V, Munafo C, Ferrau V, Gitto E et al. High-mobility group protein B1: a new biomarker of metabolic syndrome in obese children. Eur J Endocrinol 2013; 168: 631–638.

    Article  CAS  Google Scholar 

  17. Gunasekaran MK, Viranaicken W, Girard AC, Festy F, Cesari M, Roche R et al. Inflammation triggers high mobility group box 1 (HMGB1) secretion in adipose tissue, a potential link to obesity. Cytokine 2013; 64: 103–111.

    Article  CAS  Google Scholar 

  18. Nativel B, Marimoutou M, Thon-Hon VG, Gunasekaran MK, Andries J, Stanislas G et al. Soluble HMGB1 is a novel adipokine stimulating IL-6 secretion through RAGE receptor in SW872 preadipocyte cell line: contribution to chronic inflammation in fat tissue. PLoS One 2013; 8: e76039.

    Article  CAS  Google Scholar 

  19. Herrero L, Shapiro H, Nayer A, Lee J, Shoelson SE . Inflammation and adipose tissue macrophages in lipodystrophic mice. Proc Natl Acad Sci USA 2010; 107: 240–245.

    Article  CAS  Google Scholar 

  20. Sell H, Habich C, Eckel J . Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 2012; 8: 709–716.

    Article  CAS  Google Scholar 

  21. Moreno-Navarrete JM, Catalan V, Whyte L, Diaz-Arteaga A, Vazquez-Martinez R, Rotellar F et al. The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes 2012; 61: 281–291.

    Article  CAS  Google Scholar 

  22. Rodriguez A, Gomez-Ambrosi J, Catalan V, Rotellar F, Valenti V, Silva C et al. The ghrelin O-acyltransferase-ghrelin system reduces TNF-alpha-induced apoptosis and autophagy in human visceral adipocytes. Diabetologia 2012; 55: 3038–3050.

    Article  CAS  Google Scholar 

  23. Genuth S, Alberti KG, Bennett P, Buse J, Defronzo R, Kahn R et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003; 26: 3160–3167.

    Article  Google Scholar 

  24. Moreno-Navarrete JM, Martinez-Barricarte R, Catalan V, Sabater M, Gomez-Ambrosi J, Ortega FJ et al. Complement factor H is expressed in adipose tissue in association with insulin resistance. Diabetes 2010; 59: 200–209.

    Article  CAS  Google Scholar 

  25. Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab 2013; 18: 533–545.

    Article  CAS  Google Scholar 

  26. Pulido MR, Diaz-Ruiz A, Jimenez-Gomez Y, Garcia-Navarro S, Gracia-Navarro F, Tinahones F et al. Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 2011; 6: e22931.

    Article  CAS  Google Scholar 

  27. Bassols J, Ortega FJ, Moreno-Navarrete JM, Peral B, Ricart W, Fernandez-Real JM . Study of the proinflammatory role of human differentiated omental adipocytes. J Cell Biochem 2009; 107: 1107–1117.

    Article  CAS  Google Scholar 

  28. Joost H-G, Schürmann A . Subcellular fractionation of adipocytes and 3T3-L1 cells. In: Ailhaud G (ed). Adipose Tissue Protocols, Methods in Molecular Biology, vol. 155. Humana Press: Totowa, NJ, USA, 2001, pp 77–82.

    Chapter  Google Scholar 

  29. Berggren PO, Larsson O . Ca2+ and pancreatic B-cell function. Biochem Soc Trans 1994; 22: 12–18.

    Article  CAS  Google Scholar 

  30. Tang D, Kang R, Zeh HJ 3rd, Lotze MT . High-mobility group box 1 and cancer. Biochim Biophys Acta 2010; 1799: 131–140.

    Article  CAS  Google Scholar 

  31. Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, Ferrari S et al. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 1999; 22: 276–280.

    Article  CAS  Google Scholar 

  32. de Souza AW, Westra J, Limburg PC, Bijl M, Kallenberg CG . HMGB1 in vascular diseases: Its role in vascular inflammation and atherosclerosis. Autoimmun Rev 2012; 11: 909–917.

    Article  CAS  Google Scholar 

  33. Jung JH, Park JH, Jee MH, Keum SJ, Cho MS, Yoon SK et al. Hepatitis C virus infection is blocked by HMGB1 released from virus-infected cells. J Virol 2011; 85: 9359–9368.

    Article  CAS  Google Scholar 

  34. Chorny A, Anderson P, Gonzalez-Rey E, Delgado M . Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria. J Immunol 2008; 180: 8369–8377.

    Article  CAS  Google Scholar 

  35. Meijer AJ, Codogno P . Signalling and autophagy regulation in health, aging and disease. Mol Aspects Med 2006; 27: 411–425.

    Article  CAS  Google Scholar 

  36. Rossol M, Heine H, Meusch U, Quandt D, Klein C, Sweet MJ et al. LPS-induced cytokine production in human monocytes and macrophages. Crit Rev Immunol 2011; 31: 379–446.

    Article  CAS  Google Scholar 

  37. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM . IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 1996; 271: 665–668.

    Article  CAS  Google Scholar 

  38. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    Article  CAS  Google Scholar 

  39. Feng D, Tang Y, Kwon H, Zong H, Hawkins M, Kitsis RN et al. High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 2011; 60: 2134–2143.

    Article  CAS  Google Scholar 

  40. Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005; 46: 2347–2355.

    Article  CAS  Google Scholar 

  41. Vitseva OI, Tanriverdi K, Tchkonia TT, Kirkland JL, McDonnell ME, Apovian CM et al. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity (Silver Spring) 2008; 16: 932–937.

    Article  CAS  Google Scholar 

  42. Rodino-Janeiro BK, Salgado-Somoza A, Teijeira-Fernandez E, Gonzalez-Juanatey JR, Alvarez E, Eiras S . Receptor for advanced glycation end-products expression in subcutaneous adipose tissue is related to coronary artery disease. Eur J Endocrinol 2011; 164: 529–537.

    Article  CAS  Google Scholar 

  43. Kohno T, Anzai T, Naito K, Miyasho T, Okamoto M, Yokota H et al. Role of high-mobility group box 1 protein in post-infarction healing process and left ventricular remodelling. Cardiovasc Res 2009; 81 : 565–573.

    Article  CAS  Google Scholar 

  44. van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA, Griffioen AW . Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 2013; 32: 363–374.

    Article  CAS  Google Scholar 

  45. Sun K, Kusminski CM, Scherer PE . Adipose tissue remodeling and obesity. J Clin Invest 2011; 121: 2094–2101.

    Article  CAS  Google Scholar 

  46. Dasu MR, Devaraj S, Park S, Jialal I . Increased toll-like receptor (TLR) activation and TLR ligands in recently diagnosed type 2 diabetic subjects. Diabetes Care 2010; 33: 861–868.

    Article  CAS  Google Scholar 

  47. Bertram R, Sherman A, Satin LS . Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am J Physiol Endocrinol Metab 2007; 293: E890–E900.

    Article  CAS  Google Scholar 

  48. Lee BW, Chae HY, Kwon SJ, Park SY, Ihm J, Ihm SH . RAGE ligands induce apoptotic cell death of pancreatic beta-cells via oxidative stress. Int J Mol Med 2010; 26: 813–818.

    CAS  PubMed  Google Scholar 

  49. Marchetti C, Di Carlo A, Facchiano F, Senatore C, De Cristofaro R, Luzi A et al. High mobility group box 1 is a novel substrate of dipeptidyl peptidase-IV. Diabetologia 2012; 55: 236–244.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by MINECO/FEDER (BFU2010–17116), J. Andalucia/FEDER (CTS-03039, CTS-6606) and CIBERobn (Instituto de Salud Carlos III), Spain. We are indebted to Dr Angel Nadal (University Miguel Hernández, Spain) for kindly providing rat insulinoma INS-1 (832/13) cells. We thank Laura Molero (Department. of Cell Biology, Physiology and Immunology; IMIBIC/Reina Sofia University Hospital/University of Cordoba, CIBERobn, Spain) and Esther Peralbo Santaella (IMIBIC Reina Sofia University Hospital/University of Cordoba) for their technical assistance with cell cultures and confocal microscopy, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J M Fernández-Real or M M Malagón.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guzmán-Ruiz, R., Ortega, F., Rodríguez, A. et al. Alarmin high-mobility group B1 (HMGB1) is regulated in human adipocytes in insulin resistance and influences insulin secretion in β-cells. Int J Obes 38, 1545–1554 (2014). https://doi.org/10.1038/ijo.2014.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.36

Keywords

This article is cited by

Search

Quick links