Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes

Abstract

Background

In obesity, adipose tissue dysfunction resulting from excessive fat accumulation leads to systemic insulin resistance (IR), the underlying alteration of Type 2 Diabetes. The specific pathways dysregulated in dysfunctional adipocytes and the extent to which it affects adipose metabolic functions remain incompletely characterized.

Methods

We interrogated the transcriptional adaptation to increased adiposity in association with insulin resistance in visceral white adipose tissue from lean men, or men presenting overweight/obesity (BMI from 19 to 33) and discordant for insulin sensitivity. In human adipocytes in vitro, we investigated the direct contribution of IR in altering metabolic gene programming and glucose utilization using 13C-isotopic glucose tracing.

Results

We found that gene expression associated with impaired glucose and lipid metabolism and inflammation represented the strongest association with systemic insulin resistance, independently of BMI. In addition, we showed that inducing IR in mature human white adipocytes was sufficient to reprogram the transcriptional profile of genes involved in important metabolic functions such as glycolysis, the pentose phosphate pathway and de novo lipogenesis. Finally, we found that IR induced a rewiring of glucose metabolism, with higher incorporation of glucose into citrate, but not into downstream metabolites within the TCA cycle.

Conclusions

Collectively, our data highlight the importance of obesity-derived insulin resistance in impacting the expression of key metabolic genes and impairing the metabolic processes of glucose utilization, and reveal a role for metabolic adaptation in adipose dysfunction in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Systemic insulin resistance is associated with a gene expression signature of perturbed glucose and lipid metabolism in human visceral adipose tissue.
Fig. 2: Induction of insulin resistance in human mature white adipocytes.
Fig. 3: IR induces a global decrease in gene expression of enzymes involved in glucose metabolism.
Fig. 4: IR impairs insulin-stimulated glucose uptake, but not mitochondrial respiration.
Fig. 5: IR rearranges glucose utilization in human white adipocytes.

Similar content being viewed by others

References

  1. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37:1595–607.

    Article  CAS  PubMed  Google Scholar 

  2. Cornier MA, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, et al. The metabolic syndrome. Endocr Rev. 2008;29:777–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156:20–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23:804–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stefan N, Häring HU, Schulze MB. Metabolically healthy obesity: the low-hanging fruit in obesity treatment? Lancet Diabetes Endocrinol. 2018;6:249–58.

    Article  PubMed  Google Scholar 

  6. Blüher M. Metabolically healthy obesity. Endocr Rev. 2020;41:405–20.

    Article  Google Scholar 

  7. Zhang M, Hu T, Zhang S, Zhou L. Associations of different adipose tissue depots with insulin resistance: a systematic review and meta-analysis of observational studies. Sci Rep. 2015;5:18495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pellegrinelli V, Carobbio S, Vidal-Puig A. Adipose tissue plasticity: how fat depots respond differently to pathophysiological cues. Diabetologia. 2016;59:1075–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A, Smith U. Insulin resistance and impaired adipogenesis. Trends in endocrinology and metabolism: TEM. 2015;26:193–200.

    Article  CAS  PubMed  Google Scholar 

  10. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.

    Article  CAS  PubMed  Google Scholar 

  11. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rydén M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P. Targets for TNF-alpha-induced lipolysis in human adipocytes. Biochem Biophys Res Commun. 2004;318:168–75.

    Article  PubMed  Google Scholar 

  13. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol. 2014;6:a009191.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sakaguchi M, Fujisaka S, Cai W, Winnay JN, Konishi M, O’Neill BT, et al. Adipocyte dynamics and reversible metabolic syndrome in mice with an inducible adipocyte-specific deletion of the insulin receptor. Cell Metab. 2017;25:448–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elbein SC, Kern PA, Rasouli N, Yao-Borengasser A, Sharma NK, Das SK. Global gene expression profiles of subcutaneous adipose and muscle from glucose-tolerant, insulin-sensitive, and insulin-resistant individuals matched for BMI. Diabetes. 2011;60:1019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qatanani M, Tan Y, Dobrin R, Greenawalt DM, Hu G, Zhao W, et al. Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients. Diabetes. 2013;62:855–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang S, Tsai LT, Zhou Y, Evertts A, Xu S, Griffin MJ, et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol. 2015;17:44–56.

    Article  CAS  PubMed  Google Scholar 

  18. Gerlini R, Berti L, Darr J, Lassi M, Brandmaier S, Fritsche L, et al. Glucose tolerance and insulin sensitivity define adipocyte transcriptional programs in human obesity. Mol Metab. 2018;18:42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rydén M, Hrydziuszko O, Mileti E, Raman A, Bornholdt J, Boyd M, et al. The adipose transcriptional response to insulin is determined by obesity, not insulin sensitivity. Cell Rep. 2016;16:2317–26.

    Article  PubMed  Google Scholar 

  20. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96..

  21. Krycer JR, Yugi K, Hirayama A, Fazakerley DJ, Quek L-E, Scalzo R, et al. Dynamic metabolomics reveals that insulin primes the adipocyte for glucose metabolism. Cell reports. 2017;21:3536–47.

    Article  CAS  PubMed  Google Scholar 

  22. Quek LE, Krycer JR, Ohno S, Yugi K, Fazakerley DJ, Scalzo R, et al. Dynamic (13)C flux analysis captures the reorganization of adipocyte glucose metabolism in response to insulin. iScience. 2020;23:100855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dong W, Keibler MA, Stephanopoulos G. Review of metabolic pathways activated in cancer cells as determined through isotopic labeling and network analysis. Metab Eng. 2017;43:113–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ruiz-Herrera X, de Los Ríos EA, Díaz JM, Lerma-Alvarado RM, Martínez de la Escalera L, López-Barrera F, et al. Prolactin promotes adipose tissue fitness and insulin sensitivity in obese males. Endocrinology. 2017;158:56–68.

    CAS  PubMed  Google Scholar 

  25. http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc.

  26. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore.

  27. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  28. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  CAS  PubMed  Google Scholar 

  29. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xue R, Lynes MD, Dreyfuss JM, Shamsi F, Schulz TJ, Zhang H, et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med. 2015;21:760–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lundh M, Petersen PS, Isidor MS, Kazoka-Sørensen DN, Plucińska K, Shamsi F, et al. Afadin is a scaffold protein repressing insulin action via HDAC6 in adipose tissue. EMBO Rep. 2019;20:e48216.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Isidor MS, Winther S, Basse AL, Petersen MC, Cannon B, Nedergaard J, et al. An siRNA-based method for efficient silencing of gene expression in mature brown adipocytes. Adipocyte. 2016;5:175–85.

    Article  CAS  PubMed  Google Scholar 

  35. Dong W, Moon SJ, Kelleher JK, Stephanopoulos G. Dissecting mammalian cell metabolism through 13C- and 2H-isotope tracing: interpretations at the molecular and systems levels. Industrial & Engineering Chemistry Research. 2020;59:2593–610.

    Article  CAS  Google Scholar 

  36. Moon SJ, Dong W, Stephanopoulos GN, Sikes HD. Oxidative pentose phosphate pathway and glucose anaplerosis support maintenance of mitochondrial NADPH pool under mitochondrial oxidative stress. Bioeng Transl Med. 2020;5:e10184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Antoniewicz MR, Kelleher JK, Stephanopoulos G. Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng. 2007;9:68–86.

    Article  CAS  PubMed  Google Scholar 

  38. Andersen E, Ingerslev LR, Fabre O, Donkin I, Altintas A, Versteyhe S, et al. Preadipocytes from obese humans with type 2 diabetes are epigenetically reprogrammed at genes controlling adipose tissue function. Int J Obes (Lond). 2019;43:306–18.

    Article  CAS  Google Scholar 

  39. Tan S-X, Fisher-Wellman KH, Fazakerley DJ, Ng Y, Pant H, Li J, et al. Selective insulin resistance in adipocytes. J Biol Chem. 2015;290:11337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85–96.

    Article  CAS  PubMed  Google Scholar 

  41. Berwick DC, Hers I, Heesom KJ, Moule SK, Tavare JM. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J Biol Chem. 2002;277:33895–33900.

    Article  CAS  PubMed  Google Scholar 

  42. Fernandez S, Viola JM, Torres A, Wallace M, Trefely S, Zhao S, et al. Adipocyte ACLY facilitates dietary carbohydrate handling to maintain metabolic homeostasis in females. Cell Rep. 2019;27:2772–84. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci USA. 2004;101:7281–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim SJ, Chae S, Kim H, Mun DG, Back S, Choi HY, et al. A protein profile of visceral adipose tissues linked to early pathogenesis of type 2 diabetes mellitus. Mol Cell Proteomics. 2014;13:811–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127:74–82.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lo KA, Labadorf A, Kennedy NJ, Han MS, Yap YS, Matthews B, et al. Analysis of in vitro insulin-resistance models and their physiological relevance to in vivo diet-induced adipose insulin resistance. Cell Rep. 2013;5:259–70.

    Article  CAS  PubMed  Google Scholar 

  47. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science. 2009;324:1076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boon R, Silveira GG, Mostoslavsky R. Nuclear metabolism and the regulation of the epigenome. Nat Metab. 2020;2:1190–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Xarubet Ruiz-Herrera, Samuel A.J. Trammel and Patricia S. S. Petersen for technical assistance, Juleen R. Zierath and the members of the Emanuelli group for discussions.

Funding

This work was supported by internal funding from the Novo Nordisk Foundation Center for Basic Metabolic Research, an independent research center at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (NNF18CC0034900). MSI received an EFSD Albert Renold Travel Fellowship. GS and WD were supported by NIH R01 CA160458. YM was funded by CONACYT 261168 and 284771. The funding sources had no involvement in study design; in the collection, analysis and interpretation of data; nor in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

MSI, YM, BE: study conception and design, data interpretation. MSI, WD, RISU: experimentation. MSI, RISU, JTAS, AVE, JV, AA, RB: data analysis. GS: supervision of metabolic tracing study. MSI, WD, YM, BE: manuscript preparation. BE: overall supervision. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Brice Emanuelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isidor, M.S., Dong, W., Servin-Uribe, R.I. et al. Insulin resistance rewires the metabolic gene program and glucose utilization in human white adipocytes. Int J Obes 46, 535–543 (2022). https://doi.org/10.1038/s41366-021-01021-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-021-01021-y

Search

Quick links