Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Formoterol, a highly β2-selective agonist, increases energy expenditure and fat utilisation in men

Abstract

Background:

The sympathetic nervous system regulates energy metabolism via β-adrenoreceptors. Therapeutic exploitation of previous β2-adrenegic agonists for metabolic benefits has been hindered by cross stimulation of cardiac β1-adrenoceptor, causing tachycardia. Formoterol is a novel highly β2-selective adrenergic agonist and holds promise as a β2-agonist that could impart selective beneficial metabolic effects.

Objective:

To investigate the metabolic effects of formoterol on energy and substrate metabolism.

Participants:

Healthy volunteers.

Design:

(1) Dose-finding study, step-wise incremental design of weekly administration of 80, 160 and 320 μg daily of formoterol in four subjects and, (2) metabolic study, an open-label metabolic evaluation of 1-week treatment in eight men using a dose determined from (1).

Main outcome:

Resting energy expenditure (EE), diet-induced thermogenesis (DIT) and fat oxidation (Fox) using indirect calorimetry, heart rate and plasma non-esterified fatty acid (NEFA) levels.

Results:

In the dose-finding study, all three doses increased resting EE and Fox with the 320 μg dose significantly increasing heart rate. In the metabolic study, the selected 160 μg daily dose increased resting EE by 13±2% (P<0.001) and Fox by 23±4% (P<0.01), but not DIT. Plasma NEFA levels rose by 16±2% (P<0.01). Heart rate did not change significantly. Out of the eight subjects, six reported tremor and palpitation, two lost appetite and one suffered from insomnia.

Conclusions:

At a dose of 160 μg per day, formoterol increases resting EE and fat utilization without inducing tachycardia. From this first metabolic evaluation in humans, we conclude that formoterol imparts beneficial metabolic changes that may be exploited for therapy of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bray GA, Inoue S, Nishizawa Y . Hypothalamic obesity. The autonomic hypothesis and the lateral hypothalamus. Diabetologia 1981; 20 (Suppl): 366–377.

    Article  CAS  PubMed  Google Scholar 

  2. Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK et al. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002; 297: 843–845.

    Article  CAS  PubMed  Google Scholar 

  3. Lee P, Zhao JT, Swarbrick MM, Gracie G, Bova R, Greenfield JR et al. High prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab 2011; 96: 2450–2455.

    Article  CAS  PubMed  Google Scholar 

  4. Bjorgell P, Belfrage P . Characteristics of the lipolytic beta-adrenergic receptors in hamster adipocytes. Biochem Biophys Acta 1982; 713: 80–85.

    Article  CAS  PubMed  Google Scholar 

  5. Mersmann HJ . Acute metabolic effects of adrenergic agents in swine. Am J Physiol 1987; 252 (1 Part 1): E85–E95.

    CAS  PubMed  Google Scholar 

  6. Lee P, Kengne AP, Greenfield JR, Day RO, Chalmers J, Ho KK . Metabolic sequelae of beta-blocker therapy: weighing in on the obesity epidemic? Int J Obes 2011; 35: 1395–1403.

    Article  CAS  Google Scholar 

  7. Schiffelers SL, Saris WH, Boomsma F, van Baak MA . beta(1)- and beta(2)-Adrenoceptor-mediated thermogenesis and lipid utilization in obese and lean men. J Clin Endocrinol Metab 2001; 86: 2191–2199.

    CAS  PubMed  Google Scholar 

  8. Lofdahl CG, Svedmyr N . Formoterol fumarate, a new beta 2-adrenoceptor agonist. Acute studies of selectivity and duration of effect after inhaled and oral administration. Allergy 1989; 44: 264–271.

    Article  CAS  PubMed  Google Scholar 

  9. Trazzi S, Mutti E, Frattola A, Imholz B, Parati G, Mancia G . Reproducibility of non-invasive and intra-arterial blood pressure monitoring: implications for studies on antihypertensive treatment. J Hypertens 1991; 9: 115–119.

    Article  CAS  PubMed  Google Scholar 

  10. Burt MG, Gibney J, Ho KK . Characterization of the metabolic phenotypes of Cushing's syndrome and growth hormone deficiency: a study of body composition and energy metabolism. Clin Endocrinol 2006; 64: 436–443.

    Article  Google Scholar 

  11. Ferrannini E . The theoretical bases of indirect calorimetry: a review. Metabolism 1988; 37: 287–301.

    Article  CAS  PubMed  Google Scholar 

  12. O'Sullivan AJ, Kelly JJ, Hoffman DM, Freund J, Ho KK . Body composition and energy expenditure in acromegaly. J Clin Endocrinol Metab 1994; 78: 381–386.

    CAS  PubMed  Google Scholar 

  13. Astrup A . The sympathetic nervous system as a target for intervention in obesity. Int J Obes Relat Metab Disord 1995; 19 (Suppl 7): S24–S28.

    PubMed  Google Scholar 

  14. Hoeks J, van Baak MA, Hesselink MK, Hul GB, Vidal H, Saris WH et al. Effect of beta1- and beta2-adrenergic stimulation on energy expenditure, substrate oxidation, and UCP3 expression in humans. Am J Physiol Endocrinol Metab 2003; 285 (4): E775–E782.

    Article  CAS  PubMed  Google Scholar 

  15. Blaak EE, Schiffelers SL, Saris WH, Mensink M, Kooi ME . Impaired beta-adrenergically mediated lipolysis in skeletal muscle of obese subjects. Diabetologia 2004; 47: 1462–1468.

    Article  CAS  PubMed  Google Scholar 

  16. Jocken JW, Roepstorff C, Goossens GH, van der Baan P, van Baak M, Saris WH et al. Hormone-sensitive lipase serine phosphorylation and glycerol exchange across skeletal muscle in lean and obese subjects: effect of beta-adrenergic stimulation. Diabetes 2008; 57: 1834–1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jocken JW, Blaak EE, van der Kallen CJ, van Baak MA, Saris WH . Blunted beta-adrenoceptor-mediated fat oxidation in overweight subjects: a role for the hormone-sensitive lipase gene. Metabolism 2008; 57: 326–332.

    Article  CAS  PubMed  Google Scholar 

  18. Jocken JW, Blaak EE, Schiffelers S, Arner P, van Baak MA, Saris WH . Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis and fat oxidation. Int J Obes 2007; 31: 813–819.

    Article  CAS  Google Scholar 

  19. Blaak EE, van Baak MA, Saris WH . Beta-adrenergically stimulated fat oxidation is diminished in middle-aged compared to young subjects. J Clin Endocrinol Metab 1999; 84: 3764–3769.

    CAS  PubMed  Google Scholar 

  20. Blaak EE, Kemerink GJ, Pakbiers MT, Wolffenbuttel BH, Heidendal GA, Saris WH . Microdialysis assessment of local adipose tissue lipolysis during beta-adrenergic stimulation in upper-body-obese subjects with type II diabetes. Clin Sci 1999; 97: 421–428.

    Article  CAS  Google Scholar 

  21. Blaak EE, Saris WH, Wolffenbuttel BH . Substrate utilization and thermogenic responses to beta-adrenergic stimulation in obese subjects with NIDDM. Int J Obes Relat Metab Disord 1999; 23: 411–418.

    Article  CAS  PubMed  Google Scholar 

  22. Kraenzlin ME, Keller U, Keller A, Thelin A, Arnaud MJ, Stauffacher W . Elevation of plasma epinephrine concentrations inhibits proteolysis and leucine oxidation in man via beta-adrenergic mechanisms. J Clin Invest 1989; 84: 388–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. White WB . Heart rate and the rate-pressure product as determinants of cardiovascular risk in patients with hypertension. Am J Hypertens 1999; 12 (2 Part 2): 50S–55S.

    Article  CAS  PubMed  Google Scholar 

  24. Ryall JG, Schertzer JD, Lynch GS . Attenuation of age-related muscle wasting and weakness in rats after formoterol treatment: therapeutic implications for sarcopenia. J Gerontol A Biol Sci Med Sci 2007; 62: 813–823.

    Article  PubMed  Google Scholar 

  25. Philipson LH . beta-Agonists and metabolism. J Allergy Clin Immunol 2002; 110 (6 Suppl): S313–S317.

    Article  CAS  PubMed  Google Scholar 

  26. Guhan AR, Cooper S, Oborne J, Lewis S, Bennett J, Tattersfield AE . Systemic effects of formoterol and salmeterol: a dose-response comparison in healthy subjects. Thorax 2000; 55 (8): 650–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brodde OE, Daul A, Michel MC . Subtype-selective modulation of human beta 1- and beta 2-adrenoceptor function by beta-adrenoceptor agonists and antagonists. Clin Physiol Biochem 1990; 8 (Suppl 2): 11–17.

    CAS  PubMed  Google Scholar 

  28. Lynch GS, Ryall JG . Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 2008; 88 (2): 729–767.

    Article  CAS  PubMed  Google Scholar 

  29. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360 (15): 1500–1508.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K K Y Ho.

Ethics declarations

Competing interests

Dr Paul Lee was funded by an Australian National Health Medical Research Council postgraduate scholarship. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, P., Day, R., Greenfield, J. et al. Formoterol, a highly β2-selective agonist, increases energy expenditure and fat utilisation in men. Int J Obes 37, 593–597 (2013). https://doi.org/10.1038/ijo.2012.90

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.90

Keywords

This article is cited by

Search

Quick links