Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Adaptation of human adipose tissue to hypocaloric diet

Abstract

Hypocaloric diet is a key component of the weight-reducing treatment of obesity and obesity-related disorders. Hypocaloric diets and the associated weight reduction promote improvement of metabolic profile of obese individuals. Among the mechanisms that underlie this beneficial metabolic outcome, the diet-induced modifications of morphological and functional characteristics of human adipose tissue (AT) are believed to have an important role. Prospective studies of hypocaloric weight-reducing dietary intervention demonstrate effects on adipocyte metabolism, namely lipolysis and lipogenesis, and associated changes of the adipocyte size. The endocrine function of AT, which involves cytokine and adipokine production by adipocytes, as well as by cells of stromavascular fraction, is also regulated by dietary intervention. Related inflammatory status of AT is modulated also as a consequence of the changes in recruitment of immune cells, mainly macrophages, in AT. Here, we give an overview of metabolic and endocrine modifications in human AT induced by a variety of hypocaloric diets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Horton ES . Effects of lifestyle changes to reduce risks of diabetes and associated cardiovascular risks: results from large scale efficacy trials. Obesity (Silver Spring) 2009; 17 (Suppl 3): S43–S48.

    Google Scholar 

  2. Brown T, Avenell A, Edmunds LD, Moore H, Whittaker V, Avery L et alSystematic review of long-term lifestyle interventions to prevent weight gain and morbidity in adults. Obes Rev 2009; 10: 627–638.

    CAS  PubMed  Google Scholar 

  3. Douketis JD, Macie C, Thabane L, Williamson DF . Systematic review of long-term weight loss studies in obese adults: clinical significance and applicability to clinical practice. Int J Obes (Lond) 2005; 29: 1153–1167.

    CAS  Google Scholar 

  4. Hajer GR, van Haeften TW, Visseren FL . Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29: 2959–2971.

    CAS  PubMed  Google Scholar 

  5. Tsigos C, Hainer V, Basdevant A, Finer N, Fried M, Mathus-Vliegen E et alManagement of obesity in adults: European clinical practice guidelines. Obesity facts 2008; 1: 106–116.

    PubMed  PubMed Central  Google Scholar 

  6. Arner P, Spalding KL . Fat cell turnover in humans. Biochem Biophys Res Commun 2010; 396: 101–104.

    CAS  PubMed  Google Scholar 

  7. Jacobsson B, Smith U . Effect of cell size on lipolysis and antilipolytic action of insulin in human fat cells. J Lipid Res 1972; 13: 651–656.

    CAS  PubMed  Google Scholar 

  8. Skurk T, Alberti-Huber C, Herder C, Hauner H . Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007; 92: 1023–1033.

    CAS  PubMed  Google Scholar 

  9. Stich V, Harant I, De Glisezinski I, Crampes F, Berlan M, Kunesova M et alAdipose tissue lipolysis and hormone-sensitive lipase expression during very-low-calorie diet in obese female identical twins. J Clin Endocrinol Metab 1997; 82: 739–744.

    CAS  PubMed  Google Scholar 

  10. Hellstrom L, Reynisdottir S, Langin D, Rossner S, Arner P . Regulation of lipolysis in fat cells of obese women during long-term hypocaloric diet. Int J Obes Relat Metab Disord 1996; 20: 745–752.

    CAS  PubMed  Google Scholar 

  11. Presta E, Leibel RL, Hirsch J . Regional changes in adrenergic receptor status during hypocaloric intake do not predict changes in adipocyte size or body shape. Metabolism 1990; 39: 307–315.

    CAS  PubMed  Google Scholar 

  12. Mauriege P, Imbeault P, Langin D, Lacaille M, Almeras N, Tremblay A et alRegional and gender variations in adipose tissue lipolysis in response to weight loss. J Lipid Res 1999; 40: 1559–1571.

    CAS  PubMed  Google Scholar 

  13. Lofgren P, Andersson I, Adolfsson B, Leijonhufvud BM, Hertel K, Hoffstedt J et alLong-term prospective and controlled studies demonstrate adipose tissue hypercellularity and relative leptin deficiency in the postobese state. J Clin Endocrinol Metab 2005; 90: 6207–6213.

    PubMed  Google Scholar 

  14. Bjorntorp P, Carlgren G, Isaksson B, Krotkiewski M, Larsson B, Sjostrom L . Effect of an energy-reduced dietary regimen in relation to adipose tissue cellularity in obese women. Am J Clin Nutr 1975; 28: 445–452.

    CAS  PubMed  Google Scholar 

  15. You T, Murphy KM, Lyles MF, Demons JL, Lenchik L, Nicklas BJ . Addition of aerobic exercise to dietary weight loss preferentially reduces abdominal adipocyte size. Int J Obes (Lond) 2006; 30: 1211–1216.

    CAS  Google Scholar 

  16. Pasarica M, Tchoukalova YD, Heilbronn LK, Fang X, Albu JB, Kelley DE et alDifferential effect of weight loss on adipocyte size subfractions in patients with type 2 diabetes. Obesity (Silver Spring) 2009; 17: 1976–1978.

    CAS  Google Scholar 

  17. Guo W, Bigornia S, Leizerman I, Xie W, McDonnell M, Clemente K et alNew scanning electron microscopic method for determination of adipocyte size in humans and mice. Obesity (Silver Spring) 2007; 15: 1657–1665.

    Google Scholar 

  18. Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE . Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 2000; 43: 1498–1506.

    CAS  PubMed  Google Scholar 

  19. Lonn M, Mehlig K, Bengtsson C, Lissner L . Adipocyte size predicts incidence of type 2 diabetes in women. FASEB J 2010; 24: 326–331.

    PubMed  Google Scholar 

  20. Hoffstedt J, Arner E, Wahrenberg H, Andersson DP, Qvisth V, Lofgren P et alRegional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia 2010; 53: 2496–2503.

    CAS  PubMed  Google Scholar 

  21. Stich V, Berlan M . Physiological regulation of NEFA availability: lipolysis pathway. Proc Nutr Soc 2004; 63: 369–374.

    CAS  PubMed  Google Scholar 

  22. Lafontan M, Langin D . Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009; 48: 275–297.

    CAS  PubMed  Google Scholar 

  23. Reynisdottir S, Ellerfeldt K, Wahrenberg H, Lithell H, Arner P . Multiple lipolysis defects in the insulin resistance (metabolic) syndrome. J Clin Invest 1994; 93: 2590–2599.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Horowitz JF, Coppack SW, Paramore D, Cryer PE, Zhao G, Klein S . Effect of short-term fasting on lipid kinetics in lean and obese women. Am J Physiol 1999; 276: E278–E284.

    CAS  PubMed  Google Scholar 

  25. Horowitz JF, Coppack SW, Klein S . Whole-body and adipose tissue glucose metabolism in response to short-term fasting in lean and obese women. Am J Clin Nutr 2001; 73: 517–522.

    CAS  PubMed  Google Scholar 

  26. Gjedsted J, Gormsen LC, Nielsen S, Schmitz O, Djurhuus CB, Keiding S et alEffects of a 3-day fast on regional lipid and glucose metabolism in human skeletal muscle and adipose tissue. Acta Physiol (Oxf) 2007; 191: 205–216.

    CAS  Google Scholar 

  27. Sengenes C, Stich V, Berlan M, Hejnova J, Lafontan M, Pariskova Z et alIncreased lipolysis in adipose tissue and lipid mobilization to natriuretic peptides during low-calorie diet in obese women. Int J Obes Relat Metab Disord 2002; 26: 24–32.

    CAS  PubMed  Google Scholar 

  28. Barbe P, Stich V, Galitzky J, Kunesova M, Hainer V, Lafontan M et al In vivo increase in beta-adrenergic lipolytic response in subcutaneous adipose tissue of obese subjects submitted to a hypocaloric diet. J Clin Endocrinol Metab 1997; 82: 63–69.

    CAS  PubMed  Google Scholar 

  29. Hagstrom-Toft E, Thorne A, Reynisdottir S, Moberg E, Rossner S, Bolinder J et alEvidence for a major role of skeletal muscle lipolysis in the regulation of lipid oxidation during caloric restriction in vivo. Diabetes 2001; 50: 1604–1611.

    CAS  PubMed  Google Scholar 

  30. Stich V, Marion-Latard F, Hejnova J, Viguerie N, Lefort C, Suljkovicova H et alHypocaloric diet reduces exercise-induced alpha 2-adrenergic antilipolytic effect and alpha 2-adrenergic receptor mRNA levels in adipose tissue of obese women. J Clin Endocrinol Metab 2002; 87: 1274–1281.

    CAS  PubMed  Google Scholar 

  31. Lofgren P, Hoffstedt J, Naslund E, Wiren M, Arner P . Prospective and controlled studies of the actions of insulin and catecholamine in fat cells of obese women following weight reduction. Diabetologia 2005; 48: 2334–2342.

    CAS  PubMed  Google Scholar 

  32. Wahrenberg H, Ek I, Reynisdottir S, Carlstrom K, Bergqvist A, Arner P . Divergent effects of weight reduction and oral anticonception treatment on adrenergic lipolysis regulation in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab 1999; 84: 2182–2187.

    CAS  PubMed  Google Scholar 

  33. Flechtner-Mors M, Ditschuneit HH, Yip I, Adler G . Sympathetic modulation of lipolysis in subcutaneous adipose tissue: effects of gender and energy restriction. J Lab Clin Med 1999; 134: 33–41.

    CAS  PubMed  Google Scholar 

  34. Jocken JW, Langin D, Smit E, Saris WH, Valle C, Hul GB et alAdipose triglyceride lipase and hormone-sensitive lipase protein expression is decreased in the obese insulin-resistant state. J Clin Endocrinol Metab 2007; 92: 2292–2299.

    CAS  PubMed  Google Scholar 

  35. Mittendorfer B, Horowitz JF, Klein S . Gender differences in lipid and glucose kinetics during short-term fasting. Am J Physiol Endocrinol Metab 2001; 281: E1333–E1339.

    CAS  PubMed  Google Scholar 

  36. Berlan M, Dang-Tran L, Lafontan M, Denard Y . Influence of hypocaloric diet on alpha-adrenergic responsiveness of obese human subcutaneous adipocytes. Int J Obes 1981; 5: 145–153.

    CAS  PubMed  Google Scholar 

  37. Rozen R, Banegas E, Davilla M, Apfelbaum M . Effects of a very-low-calorie diet on adrenergic responsiveness in human adipose tissue. Int J Obes 1984; 8: 141–149.

    CAS  PubMed  Google Scholar 

  38. Kather H, Wieland E, Fischer B, Wirth A, Schlierf G . Adrenergic regulation of lipolysis in abdominal adipocytes of obese subjects during caloric restriction: reversal of catecholamine action caused by relief of endogenous inhibition. Eur J Clin Invest 1985; 15: 30–37.

    CAS  PubMed  Google Scholar 

  39. Langin D, Dicker A, Tavernier G, Hoffstedt J, Mairal A, Ryden M et alAdipocyte lipases and defect of lipolysis in human obesity. Diabetes 2005; 54: 3190–3197.

    CAS  PubMed  Google Scholar 

  40. Imbeault P, Chevrier J, Dewailly E, Ayotte P, Despres JP, Tremblay A et alIncrease in plasma pollutant levels in response to weight loss in humans is related to in vitro subcutaneous adipocyte basal lipolysis. Int J Obes Relat Metab Disord 2001; 25: 1585–1591.

    CAS  PubMed  Google Scholar 

  41. Kolehmainen M, Vidal H, Ohisalo JJ, Pirinen E, Alhava E, Uusitupa MI . Hormone sensitive lipase expression and adipose tissue metabolism show gender difference in obese subjects after weight loss. Int J Obes Relat Metab Disord 2002; 26: 6–16.

    CAS  PubMed  Google Scholar 

  42. Coppack SW, Jensen MD, Miles JM . In vivo regulation of lipolysis in humans. J Lipid Res 1994; 35: 177–193.

    CAS  PubMed  Google Scholar 

  43. Santosa S, Hensrud DD, Votruba SB, Jensen MD . The influence of sex and obesity phenotype on meal fatty acid metabolism before and after weight loss. Am J Clin Nutr 2008; 88: 1134–1141.

    CAS  PubMed  Google Scholar 

  44. Imbeault P, Almeras N, Richard D, Despres JP, Tremblay A, Mauriege P . Effect of a moderate weight loss on adipose tissue lipoprotein lipase activity and expression: existence of sexual variation and regional differences. Int J Obes Relat Metab Disord 1999; 23: 957–965.

    CAS  PubMed  Google Scholar 

  45. Capel F, Viguerie N, Vega N, Dejean S, Arner P, Klimcakova E et alContribution of energy restriction and macronutrient composition to changes in adipose tissue gene expression during dietary weight-loss programs in obese women. J Clin Endocrinol Metab 2008; 93: 4315–4322.

    CAS  PubMed  Google Scholar 

  46. Viguerie N, Vidal H, Arner P, Holst C, Verdich C, Avizou S et alAdipose tissue gene expression in obese subjects during low-fat and high-fat hypocaloric diets. Diabetologia 2005; 48: 123–131.

    CAS  PubMed  Google Scholar 

  47. Blaak EE, van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA, Saris WH . Beta-adrenergic stimulation and abdominal subcutaneous fat blood flow in lean, obese, and reduced-obese subjects. Metabolism 1995; 44: 183–187.

    CAS  PubMed  Google Scholar 

  48. Klimcakova E, Kovacikova M, Stich V, Langin D . Adipokines and dietary interventions in human obesity. Obes Rev 2010; 11: 446–456.

    CAS  PubMed  Google Scholar 

  49. Arvidsson E, Viguerie N, Andersson I, Verdich C, Langin D, Arner P . Effects of different hypocaloric diets on protein secretion from adipose tissue of obese women. Diabetes 2004; 53: 1966–1971.

    CAS  PubMed  Google Scholar 

  50. Bastard JP, Hainque B, Dusserre E, Bruckert E, Robin D, Vallier P et alPeroxisome proliferator activated receptor-gamma, leptin and tumor necrosis factor-alpha mRNA expression during very low calorie diet in subcutaneous adipose tissue in obese women. Diabetes Metab Res Rev 1999; 15: 92–98.

    CAS  PubMed  Google Scholar 

  51. Franck N, Gummesson A, Jernas M, Glad C, Svensson PA, Guillot G et alIdentification of adipocyte genes regulated by caloric intake. J Clin Endocrinol Metab 2011; 96: E413–E418.

    CAS  PubMed  Google Scholar 

  52. Simonyte K, Olsson T, Naslund I, Angelhed JE, Lonn L, Mattsson C et alWeight loss after gastric bypass surgery in women is followed by a metabolically favorable decrease in 11beta-hydroxysteroid dehydrogenase 1 expression in subcutaneous adipose tissue. J Clin Endocrinol Metab 2010; 95: 3527–3531.

    CAS  PubMed  Google Scholar 

  53. Vidal H, Auboeuf D, De Vos P, Staels B, Riou JP, Auwerx J et alThe expression of ob gene is not acutely regulated by insulin and fasting in human abdominal subcutaneous adipose tissue. J Clin Invest 1996; 98: 251–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Andersen PH, Kristensen K, Pedersen SB, Hjollund E, Schmitz O, Richelsen B . Effects of long-term total fasting and insulin on ob gene expression in obese patients. Eur J Endocrinol 1997; 137: 229–233.

    CAS  PubMed  Google Scholar 

  55. Garaulet M, Viguerie N, Porubsky S, Klimcakova E, Clement K, Langin D et alAdiponectin gene expression and plasma values in obese women during very-low-calorie diet. Relationship with cardiovascular risk factors and insulin resistance. J Clin Endocrinol Metab 2004; 89: 756–760.

    CAS  PubMed  Google Scholar 

  56. Behre CJ, Gummesson A, Jernas M, Lystig TC, Fagerberg B, Carlsson B et alDissociation between adipose tissue expression and serum levels of adiponectin during and after diet-induced weight loss in obese subjects with and without the metabolic syndrome. Metabolism 2007; 56: 1022–1028.

    CAS  PubMed  Google Scholar 

  57. Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A et alRegulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 2003; 285: E527–E533.

    CAS  PubMed  Google Scholar 

  58. Moschen AR, Molnar C, Geiger S, Graziadei I, Ebenbichler CF, Weiss H et alAnti-inflammatory effects of excessive weight loss: potent suppression of adipose interleukin 6 and tumour necrosis factor alpha expression. Gut 2010; 59: 1259–1264.

    CAS  PubMed  Google Scholar 

  59. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C et alReduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005; 54: 2277–2286.

    CAS  PubMed  Google Scholar 

  60. Kovacikova M, Vitkova M, Klimcakova E, Polak J, Hejnova J, Bajzova M et alVisfatin expression in subcutaneous adipose tissue of pre-menopausal women: relation to hormones and weight reduction. Eur J Clin Invest 2008; 38: 516–522.

    CAS  PubMed  Google Scholar 

  61. Bruun JM, Pedersen SB, Kristensen K, Richelsen B . Opposite regulation of interleukin-8 and tumor necrosis factor-alpha by weight loss. Obes Res 2002; 10: 499–506.

    CAS  PubMed  Google Scholar 

  62. Poitou C, Viguerie N, Cancello R, De Matteis R, Cinti S, Stich V et alSerum amyloid A: production by hman white adipocyte and regulation by obesity and nutrition. Diabetologia 2005; 48: 519–528.

    CAS  PubMed  Google Scholar 

  63. Sjoholm K, Palming J, Olofsson LE, Gummesson A, Svensson PA, Lystig TC et alA microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocrinol Metab 2005; 90: 2233–2239.

    PubMed  Google Scholar 

  64. Vitkova M, Klimcakova E, Kovacikova M, Valle C, Moro C, Polak J et alPlasma levels and adipose tissue messenger ribonucleic acid expression of retinol-binding protein 4 are reduced during calorie restriction in obese subjects but are not related to diet-induced changes in insulin sensitivity. J Clin Endocrinol Metab 2007; 92: 2330–2335.

    CAS  PubMed  Google Scholar 

  65. Castan-Laurell I, Vitkova M, Daviaud D, Dray C, Kovacikova M, Kovacova Z et alEffect of hypocaloric diet-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur J Endocrinol 2008; 158: 905–910.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Saiki A, Olsson M, Jernas M, Gummesson A, McTernan PG, Andersson J et alTenomodulin is highly expressed in adipose tissue, increased in obesity, and down-regulated during diet-induced weight loss. J Clin Endocrinol Metab 2009; 94: 3987–3994.

    CAS  PubMed  Google Scholar 

  67. Kolehmainen M, Salopuro T, Schwab US, Kekalainen J, Kallio P, Laaksonen DE et alWeight reduction modulates expression of genes involved in extracellular matrix and cell death: the GENOBIN study. Int J Obes (Lond) 2008; 32: 292–303.

    CAS  Google Scholar 

  68. Magnusson B, Gummesson A, Glad CA, Goedecke JH, Jernas M, Lystig TC et alCell death-inducing DFF45-like effector C is reduced by caloric restriction and regulates adipocyte lipid metabolism. Metabolism 2008; 57: 1307–1313.

    CAS  PubMed  Google Scholar 

  69. Kos K, Wong S, Tan B, Gummesson A, Jernas M, Franck N et alRegulation of the fibrosis and angiogenesis promoter SPARC/osteonectin in human adipose tissue by weight change, leptin, insulin, and glucose. Diabetes 2009; 58: 1780–1788.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kovacova Z, Vitkova M, Kovacikova M, Klimcakova E, Bajzova M, Hnevkovska Z et alSecretion of adiponectin multimeric complexes from adipose tissue explants is not modified by very low calorie diet. Eur J Endocrinol 2009; 160: 585–592.

    CAS  PubMed  Google Scholar 

  71. Siklova-Vitkova M . Effect of multiphase weight-reducing diet on adipokine expression and secretion in subcutaneous adipose tissue. Obes Rev 2011; 12 (Suppl. 1): 164.

    Google Scholar 

  72. Capel F, Klimcakova E, Viguerie N, Roussel B, Vitkova M, Kovacikova M et alMacrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes 2009; 58: 1558–1567.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA et alWeight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 2004; 18: 1657–1669.

    CAS  PubMed  Google Scholar 

  74. Dahlman I, Linder K, Arvidsson Nordstrom E, Andersson I, Liden J, Verdich C et alChanges in adipose tissue gene expression with energy-restricted diets in obese women. Am J Clin Nutr 2005; 81: 1275–1285.

    CAS  PubMed  Google Scholar 

  75. Mutch DM, Temanni MR, Henegar C, Combes F, Pelloux V, Holst C et alAdipose gene expression prior to weight loss can differentiate and weakly predict dietary responders. PLoS On 2007; 2: e1344.

    Google Scholar 

  76. Mutch DM, Pers TH, Temanni MR, Pelloux V, Marquez-Quinones A, Holst C et alA distinct adipose tissue gene expression response to caloric restriction predicts 6-mo weight maintenance in obese subjects. Am J Clin Nutr 2011; 94: 1399–1409.

    CAS  PubMed  Google Scholar 

  77. Dankel SN, Fadnes DJ, Stavrum AK, Stansberg C, Holdhus R, Hoang T et alSwitch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One 2010; 5: e11033.

    PubMed  PubMed Central  Google Scholar 

  78. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Curat CA, Miranville A, Sengenes C, Diehl M, Tonus C, Busse R et alFrom blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 2004; 53: 1285–1292.

    CAS  PubMed  Google Scholar 

  80. Wellen KE, Hotamisligil GS . Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 2003; 112: 1785–1788.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kovacikova M, Sengenes C, Kovacova Z, Siklova-Vitkova M, Klimcakova E, Polak J et alDietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women. Int J Obes (Lond) 2011; 35: 91–98.

    CAS  Google Scholar 

  82. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A et alHuman adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 2009; 94: 4619–4623.

    CAS  PubMed  Google Scholar 

  84. Klimcakova E, Roussel B, Marquez-Quinones A, Kovacova Z, Kovacikova M, Combes M et alWorsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J Clin Endocrinol Metab 2011; 96: E73–E82.

    CAS  PubMed  Google Scholar 

  85. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R et alWeight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 2010; 120: 3466–3479.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R et alMCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Takahashi K, Yamaguchi S, Shimoyama T, Seki H, Miyokawa K, Katsuta H et alJNK- and IkappaB-dependent pathways regulate MCP-1 but not adiponectin release from artificially hypertrophied 3T3-L1 adipocytes preloaded with palmitate in vitro. Am J Physiol Endocrinol Metab 2008; 294: E898–E909.

    CAS  PubMed  Google Scholar 

  88. Henegar C, Tordjman J, Achard V, Lacasa D, Cremer I, Guerre-Millo M et alAdipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol 2008; 9: R14.

    PubMed  PubMed Central  Google Scholar 

  89. Keophiphath M, Achard V, Henegar C, Rouault C, Clement K, Lacasa D . Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol Endocrinol 2009; 23: 11–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Divoux A, Tordjman J, Lacasa D, Veyrie N, Hugol D, Aissat A et alFibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 2010; 59: 2817–2825.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Smith U, Hammersten J, Bjorntorp P, Kral JG . Regional differences and effect of weight reduction on human fat cell metabolism. Eur J Clin Invest 1979; 9: 327–332.

    CAS  PubMed  Google Scholar 

  92. Chaston TB, Dixon JB . Factors associated with percent change in visceral versus subcutaneous abdominal fat during weight loss: findings from a systematic review. Int J Obes (Lond) 2008; 32: 619–628.

    CAS  Google Scholar 

Download references

Acknowledgements

Our work was supported by grants IGA NS 10519-3-2009 and IGA NT 11450-3-2010 of the Ministry of Health, Project MSM 0021620814 of the Ministry of Education of the Czech Republic, by INSERM, Région Midi-Pyrénées and by Integrated Project HEPADIP (www.hepadip.org), Contract No. LSHM-CT-2005-018734 and Collaborative Project ADAPT (www.adapt-eu.net), Contract No. HEALTH-F2-2008-2011 00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Štich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossmeislová, L., Mališová, L., Kračmerová, J. et al. Adaptation of human adipose tissue to hypocaloric diet. Int J Obes 37, 640–650 (2013). https://doi.org/10.1038/ijo.2012.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.80

Keywords

This article is cited by

Search

Quick links