Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synergistic induction of interleukin-6 expression by endothelin-1 and cyclic AMP in adipocytes

Abstract

BACKGROUND:

We have demonstrated previously that endothelin-1 (ET-1) may stimulate interleukin-6 (IL-6) release from 3T3-L1 adipocytes. In this study, we further examined the combined effect of ET-1 and cyclic adenosine monophosphate (cAMP) on IL-6 release.

METHODS:

IL-6 release was measured by enzyme-linked immuosorbent assay. Reverse transcriptase-PCR and real-time PCR analyses were used to determine cellular mRNA levels. A luciferase reporter driven by promoter (−1310/+198) of mouse IL-6 gene was transfected into 3T3-L1 adipocytes to monitor IL-6 transcription.

RESULTS:

ET-1 and cAMP induced IL-6 release in a synergistic manner that can be attributed to their synergistic induction of IL-6 gene expression, as evidenced by IL-6 mRNA analysis and the IL-6 promoter reporter assay. Both ETA and ETB receptors seem to be involved. In addition, enhanced IL-6 promoter activity can be similarly induced by ET-1 and catecholamines (epinephrine and norepinephrine). The cooperative interaction between ET-1 and cAMP on IL-6 expression seems distinctive, as no other proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and IL-1β, are similarly affected. In fact, cAMP inhibited ET-1-stimulated TNF-α and IL-1β expressions in adipocytes. Furthermore, injection of mice with epinephrine and ET-1 induced a tremendously synergistic increase in serum IL-6 levels. Nevertheless, whereas cAMP induced IL-6 expression in RAW264.7 mouse macrophages, ET-1 had no effect on either the basal or the cAMP-induced IL-6 expression.

CONCLUSION:

ET-1 and epinephrine may boost plasma IL-6 levels in mice in a synergistic manner, probably through their synergistic induction of IL-6 expression in adipocytes.

SIGNIFICANCE:

This study should provide a new perspective for treating IL-6-related diseases, especially those accompanied with elevated ET-1 and catecholamine levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Kershaw EE, Flier JS . Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89: 2548–2556.

    Article  CAS  PubMed  Google Scholar 

  2. Trayhurn P, Beattie JH . Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001; 60: 329–339.

    Article  CAS  PubMed  Google Scholar 

  3. Smith U . Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance–is insulin resistance initiated in the adipose tissue? Int J Obes Relat Metab Disord 2002; 26: 897–904.

    Article  CAS  PubMed  Google Scholar 

  4. Arner P . Insulin resistance in type 2 diabetes – role of the adipokines. Curr Mol Med 2005; 5: 333–339.

    Article  CAS  PubMed  Google Scholar 

  5. Dekker MJ, Lee S, Hudson R, Kilpatrick K, Graham TE, Ross R et al. An exercise intervention without weight loss decreases circulating interleukin-6 in lean and obese men with and without type 2 diabetes mellitus. Metabolism 2007; 56: 332–338.

    Article  CAS  PubMed  Google Scholar 

  6. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 1997; 82: 4196–4200.

    CAS  PubMed  Google Scholar 

  7. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–415.

    Article  CAS  PubMed  Google Scholar 

  8. Ottosson-Seeberger A, Lundberg JM, Alvestrand A, Ahlborg G . Exogenous endothelin-1 causes peripheral insulin resistance in healthy humans. Acta Physiol Scand 1997; 161: 211–220.

    Article  CAS  PubMed  Google Scholar 

  9. Jiang ZY, Zhou QL, Chatterjee A, Feener EP, Myers Jr MG, White MF et al. Endothelin-1 modulates insulin signaling through phosphatidylinositol 3-kinase pathway in vascular smooth muscle cells. Diabetes 1999; 48: 1120–1130.

    Article  CAS  PubMed  Google Scholar 

  10. Chou YC, Perng JC, Juan CC, Jang SY, Kwok CF, Chen WL et al. Endothelin-1 inhibits insulin-stimulated glucose uptake in isolated rat adipocytes. Biochem Biophys Res Commun 1994; 202: 688–693.

    Article  CAS  PubMed  Google Scholar 

  11. Lee TL, Hsu CT, Yen ST, Lai CW, Cheng JT . Activation of beta3-adrenoceptors by exogenous dopamine to lower glucose uptake into rat adipocytes. J Auton Nerv Syst 1998; 74: 86–90.

    Article  CAS  PubMed  Google Scholar 

  12. Ishibashi KI, Imamura T, Sharma PM, Huang J, Ugi S, Olefsky JM . Chronic endothelin-1 treatment leads to heterologous desensitization of insulin signaling in 3T3-L1 adipocytes. J Clin Invest 2001; 107: 1193–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chai SP, Chang YN, Fong JC . Endothelin-1 stimulates interleukin-6 secretion from 3T3-L1 adipocytes. Biochim Biophys Acta 2009; 1790: 213–218.

    Article  CAS  PubMed  Google Scholar 

  14. Kao YS, Fong JC . Endothelin-1 induction of Glut1 transcription in 3T3-L1 adipocytes involves distinct PKCepsilon- and p42/p44 MAPK-dependent pathways. Biochim Biophys Acta 2008; 1780: 154–159.

    Article  CAS  PubMed  Google Scholar 

  15. Fasshauer M, Klein J, Lossner U, Paschke R . Interleukin (IL)-6 mRNA expression is stimulated by insulin, isoproterenol, tumour necrosis factor alpha, growth hormone, and IL-6 in 3T3-L1 adipocytes. Horm Metab Res 2003; 35: 147–152.

    Article  CAS  PubMed  Google Scholar 

  16. Vicennati V, Vottero A, Friedman C, Papanicolaou DA . Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord 2002; 26: 905–911.

    Article  CAS  PubMed  Google Scholar 

  17. Fong JC, Kao YS, Tsai HY, Chiou YY, Chiou GY . Synergistic effect of endothelin-1 and cyclic AMP on glucose transport in 3T3-L1 adipocytes. Cell Signal 2004; 16: 811–821.

    Article  CAS  PubMed  Google Scholar 

  18. Kao YS, Fong JC . A novel cross-talk between endothelin-1 and cyclic AMP signaling pathways in the regulation of GLUT1 transcription in 3T3-L1 adipocytes. Cell Signal 2011; 23: 901–910.

    Article  CAS  PubMed  Google Scholar 

  19. Collins S, Surwit RS . The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog Horm Res 2001; 56: 309–328.

    Article  CAS  PubMed  Google Scholar 

  20. Juan CC, Chang CL, Lai YH, Ho LT . Endothelin-1 induces lipolysis in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2005; 288: E1146–E1152.

    Article  CAS  PubMed  Google Scholar 

  21. van Harmelen V, Eriksson A, Astrom G, Wahlen K, Naslund E, Karpe F et al. Vascular peptide endothelin-1 links fat accumulation with alterations of visceral adipocyte lipolysis. Diabetes 2008; 57: 378–386.

    Article  CAS  PubMed  Google Scholar 

  22. Tilg H, Moschen AR . Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 2008; 14: 222–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan KS, Nackley AG, Satterfield K, Maixner W, Diatchenko L, Flood PM . Beta2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal 2007; 19: 251–260.

    Article  CAS  PubMed  Google Scholar 

  24. Eder K, Baffy N, Falus A, Fulop AK . The major inflammatory mediator interleukin-6 and obesity. Inflamm Res 2009; 58: 727–736.

    Article  CAS  PubMed  Google Scholar 

  25. Hoene M, Weigert C . The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev 2008; 9: 20–29.

    CAS  PubMed  Google Scholar 

  26. Martin C, Boisson C, Haccoun M, Thomachot L, Mege JL . Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med 1997; 25: 1813–1819.

    Article  CAS  PubMed  Google Scholar 

  27. Fonseca RB, Mohr AM, Wang L, Sifri ZC, Rameshwar P, Livingston DH . The impact of a hypercatecholamine state on erythropoiesis following severe injury and the role of IL-6. J Trauma 2005; 59: 884–889; discussion 889–890.

    Article  CAS  PubMed  Google Scholar 

  28. Dunser MW, Hasibeder WR . Sympathetic overstimulation during critical illness: adverse effects of adrenergic stress. J Intensive Care Med 2009; 24: 293–316.

    Article  PubMed  Google Scholar 

  29. Wanecek M, Weitzberg E, Rudehill A, Oldner A . The endothelin system in septic and endotoxin shock. Eur J Pharmacol 2000; 407: 1–15.

    Article  CAS  PubMed  Google Scholar 

  30. Fain JN, Tichansky DS, Madan AK . Most of the interleukin 1 receptor antagonist, cathepsin S, macrophage migration inhibitory factor, nerve growth factor, and interleukin 18 release by explants of human adipose tissue is by the non-fat cells, not by the adipocytes. Metabolism 2006; 55: 1113–1121.

    Article  CAS  PubMed  Google Scholar 

  31. Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK . Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318: 34–43.

    Article  CAS  PubMed  Google Scholar 

  32. Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ . Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol 1998; 275: R291–R299.

    CAS  PubMed  Google Scholar 

  33. Takaki A, Huang QH, Somogyvari-Vigh A, Arimura A . Immobilization stress may increase plasma interleukin-6 via central and peripheral catecholamines. Neuroimmunomodulation 1994; 1: 335–342.

    Article  CAS  PubMed  Google Scholar 

  34. Godbout JP, Glaser R . Stress-induced immune dysregulation: implications for wound healing, infectious disease and cancer. J Neuroimmune Pharmacol 2006; 1: 421–427.

    Article  PubMed  Google Scholar 

  35. Wilbert-Lampen U, Trapp A, Modrzik M, Fiedler B, Straube F, Plasse A . Effects of corticotropin-releasing hormone (CRH) on endothelin-1 and NO release, mediated by CRH receptor subtype R2: a potential link between stress and endothelial dysfunction? J Psychosom Res 2006; 61: 453–460.

    Article  PubMed  Google Scholar 

  36. Besedovsky HO, del Rey A . The cytokine-HPA axis feed-back circuit. Z Rheumatol 2000; 59 (Suppl 2): II/26–II/30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from Ministry of Education, Aim for the Top University Plan and National Science Council (NSC98-2320-B-010-019-MY3), ROC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Fong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, SP., Juan, CC., Kao, PH. et al. Synergistic induction of interleukin-6 expression by endothelin-1 and cyclic AMP in adipocytes. Int J Obes 37, 197–203 (2013). https://doi.org/10.1038/ijo.2012.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.11

Keywords

This article is cited by

Search

Quick links