Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vitro gene manipulation of spinal muscular atrophy fibroblast cell line using gene-targeting fragment for restoration of SMN protein expression

Abstract

The reduced level of survival motor neuron (SMN) protein, caused by homozygous deletions in the SMN gene, led to a common neurodegenerative disorder known as spinal muscular atrophy (SMA). In spite of extensive efforts to find a cure for SMA, there is currently no effective treatment available for this devastating disease. In this study, restoration of SMN expression through ‘gene-targeting’ method in SMA fibroblast cells was attempted. We designed a 2697-bp gene-targeting cassette; it consisted of an SMN1 open reading frame expressing 38 kD SMN protein and the upstream and downstream regions of exon 1 of SMN1 gene at the ends as the homology arms. SMA fibroblast cells were transfected by gene-targeting cassette using Lipofectamine LTX-PLUS reagent. Occurrence of homologous recombination in selected cells was investigated by PCR analysis. Increased expression of SMN protein was shown by real-time PCR and western blotting analysis. The immunofluorescence analysis results demonstrated that the number of SMN nuclear structures, Gems, was the same as or greater than the number of Gems found in normal fibroblasts. The results of this study indicate that gene-targeting methods do, in fact, present as an alternative for restoration of SMN expression in SMA patients-derived cells in vitro.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pearn J . Classification of spinal muscular atrophies. Lancet 1980; 1: 919–922.

    Article  CAS  Google Scholar 

  2. Munsat TL, Davies KE . International SMA Consortium meeting. Neuromuscul Disord 1992; 2: 423–428.

    Article  CAS  Google Scholar 

  3. Zerres K, Rudnik-Schöneborn S . Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol 1995; 52: 518–523.

    Article  CAS  Google Scholar 

  4. Bassell W, Spinal GJ . Muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes. Results Probl Cell Differ 2009; 48: 289–326.

    PubMed  PubMed Central  Google Scholar 

  5. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AHM et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Molec Genet 1999; 8: 1177–1183.

    Article  CAS  Google Scholar 

  6. Boda B, Mas C, Giudicelli C, Nepote V, Guimiot F, Levacher B et al. Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells. Eur J Hum Genet 2004; 12: 729–737.

    Article  CAS  Google Scholar 

  7. Lorson CL, Rindt H, Shababi M . Spinal muscular atrophy: mechanisms and therapeutic strategies. Hum Mol Gene 2010; 19: R111–R118.

    Article  CAS  Google Scholar 

  8. Mulcahy PJ, Iremonger K, Karyka E, Herranz-Martín S, Shum KT, Tam JK et al. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther 2014; 25: 575–586.

    Article  CAS  Google Scholar 

  9. DiDonato CJ, Parks RJ, Kothary R . Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Hum Gene Ther 2003; 14: 179–188.

    Article  CAS  Google Scholar 

  10. Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 2004; 114: 1726–1731.

    Article  CAS  Google Scholar 

  11. Baughan T, Shababi M, Coady TH, Dickson AM, Tullis GE, Lorson CL . Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector. Mol Ther 2006; 14: 54–62.

    Article  CAS  Google Scholar 

  12. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  Google Scholar 

  13. Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O’Riordan CR et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010; 120: 1253–1264.

    Article  CAS  Google Scholar 

  14. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010; 28: 271–274.

    Article  CAS  Google Scholar 

  15. Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 2011; 20: 681–693.

    Article  CAS  Google Scholar 

  16. Glascock JJ, Osman EY, Wetz MJ, Krogman MM, Shababi M, Lorson CL . Decreasing disease severity in symptomatic, Smn−/−;SMN2+/+, spinal muscular atrophy mice following scAAV9-SMN delivery. Hum Gene Ther 2012; 23: 330–335.

    Article  CAS  Google Scholar 

  17. Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 2013; 21: 282–290.

    Article  CAS  Google Scholar 

  18. Passini MA, Bu J, Richards AM, Treleaven CM, Sullivan JA, O'Riordan CR et al. Translational fidelity of intrathecal delivery of self-complementary AAV9-survival motor neuron 1 for spinal muscular atrophy. Hum Gene Ther 2014; 25: 619–630.

    Article  CAS  Google Scholar 

  19. Vannucci L, Lai M, Chiuppesi F, Ceccherini-Nelli L, Pistello M . Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 2013; 36: 1–22.

    CAS  PubMed  Google Scholar 

  20. Primrose SB, Twyman RM, Old RW . Principles of Gene Manipulation. Blackwell Science Ltd: London, UK, 2001.

    Google Scholar 

  21. Kan Y, Ruis B, Lin S, Hendrickson EA . The mechanism of gene targeting in human somatic cells. PLoS Genetics 2014; 10: 1–14.

    Article  Google Scholar 

  22. Thomas LS . Gene targeting vector design for embryonic stem cell modifications. In: Pease S, Saunders TL (eds). Advanced Protocols for Animal Transgenesis. Springer: Heidelberg, Germany; New York, USA, 2011, pp 57–79.

    Google Scholar 

  23. Sorrell AD, Kolb FA . Targeted modification of mammalian genomes. Biotechnol Adv 2005; 23: 431–469.

    Article  CAS  Google Scholar 

  24. Muller U . Ten years of gene targeting: targeted mouse mutants, from vector design to phenotype analysis. Mech Dev 1999; 82: 3–21.

    Article  CAS  Google Scholar 

  25. Lanzov VA . Gene targeting for gene therapy: prospects. Mole Genet Metab 1999; 68: 276–282.

    Article  CAS  Google Scholar 

  26. Narsinh KH, Wu JC . Gene correction in human embryonic and induced pluripotent stem cells: promises and challenges ahead. Mol Ther 2010; 18: 1061–1063.

    Article  CAS  Google Scholar 

  27. Khanahmad H, Noori Daloii MR, Shokrgozar MA, Azadmanesh K, Niavarani AR, Karimi M et al. A novel single step double positive double negative selection strategy for b-globin gene replacement. Biochem Biophys Res Commun 2006; 345: 14–20.

    Article  CAS  Google Scholar 

  28. Lam AP, Dean DA . Progress and prospects: nuclear import of nonviral vectors. Gene Therapy 2010; 17: 439–447.

    Article  CAS  Google Scholar 

  29. Vaughan EE, DeGiulio JV, Dean DA . Intracellular trafficking of plasmids for gene therapy: mechanisms of cytoplasmic movement and nuclear import. Curr Gene Ther 2006; 6: 671–681.

    Article  CAS  Google Scholar 

  30. Dormiani K, Sadeghi HMM, Sadeghi-Aliabadi H, Ghaedi K, Forouzanfar M, Baharvand H et al. Long-term and efficient expression of human b-globin gene in a hematopoietic cell line using a new sitespecific integrating non-viral system. Gene Ther 2015, e-pub ahead of print 1 April 2015; doi:10.1038/gt.2015.30.

  31. Dean DA, Strong DD, Zimmer WE . Nuclear entry of nonviral vectors. Gene Therapy 2005; 12: 881–890.

    Article  CAS  Google Scholar 

  32. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF et al. Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 2010; 24: 1634–1644.

    Article  CAS  Google Scholar 

  33. DiMatteo D, Callahan S, Kmiec EB . Genetic conversion of an SMN2 gene to SMN1: a novel approach to the treatment of spinal muscular atrophy. Exp Cell Res 2008; 314: 878–886.

    Article  CAS  Google Scholar 

  34. Corti S, Nizzardo M, Simone C, Falcone M, Nardini M, Ronchi D et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med 2012; 4: 165ra162.

    Article  Google Scholar 

  35. Sangiuolo F, Filareto A, Spitalieri P, Scaldaferri ML, Mango R, Bruscia E et al. In vitro restoration of functional SMN protein in human trophoblast cells affected by spinal muscular atrophy by small fragment homologous replacement. Hum Gene Ther 2005; 16: 869–880.

    Article  CAS  Google Scholar 

  36. Jablonka S, Bandılla M, Wıese S, Buhler D, Wırth B, Sendtner M et al. Co-regulation of survival of motor neuron (SMN) protein and its interactor SIP1 during development and in spinal muscular atrophy. Hum Mol Genet 2001; 10: 497–505.

    Article  CAS  Google Scholar 

  37. Jablonka S, Holtmann B, Meıster G, Bandılla M, Rossoll W, Fıscher U et al. Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proc Natl Acad Sci USA 2002; 99: 10126–10131.

    Article  CAS  Google Scholar 

  38. Arnold AS, Gueye M, Rondé P, Warter JM, Poindron P, Gies JP . Construction of a plasmid containing human SMN, the SMA determining gene, coupled to EGFP. Plasmid 2002; 47: 79–87.

    Article  CAS  Google Scholar 

  39. Volodin AA, Voloshin ON, Camerini-Otero RD . Homologous recombination and RecA protein: towards a new generation of tools for genome manipulations. Trends Biotechnol 2005; 23: 97–102.

    Article  CAS  Google Scholar 

  40. Mani M, Kandavelou K, Dy JF, Duria S, Chandrasegaran S . Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun 2005; 335: 447–457.

    Article  CAS  Google Scholar 

  41. Connelly JP, Barker JC, Pruett-Miller S, Porteus MH . Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther 2010; 18: 1103–1110.

    Article  CAS  Google Scholar 

  42. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8: 2281–2308.

    Article  CAS  Google Scholar 

  43. Hanahan D . Studies on transformation on E. coli with plasmids. J Mol Biol 1983; 166: 557–580.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ege University Scientific Research Projects (APAK) for financial support (Grant Number 2012/TIP/033). We also express our sincere appreciation to Professor Dr Bahram Kazemi (Director of Medical Biotechnology Department, School of Medicine, Shahid Beheshti University of Medical Sciences) for assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Rashnonejad.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashnonejad, A., Gündüz, C., Süslüer, S. et al. In vitro gene manipulation of spinal muscular atrophy fibroblast cell line using gene-targeting fragment for restoration of SMN protein expression. Gene Ther 23, 10–17 (2016). https://doi.org/10.1038/gt.2015.92

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.92

This article is cited by

Search

Quick links