Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo

Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease particularly characterised by degeneration of ventral motor neurons. Survival motor neuron (SMN) 1 gene mutations cause SMA, and gene addition strategies to replace the faulty SMN1 copy are a therapeutic option. We have developed a novel, codon-optimised hSMN1 transgene and produced integration-proficient and integration-deficient lentiviral vectors with cytomegalovirus (CMV), human synapsin (hSYN) or human phosphoglycerate kinase (hPGK) promoters to determine the optimal expression cassette configuration. Integrating, CMV-driven and codon-optimised hSMN1 lentiviral vectors resulted in the highest production of functional SMN protein in vitro. Integration-deficient lentiviral vectors also led to significant expression of the optimised transgene and are expected to be safer than integrating vectors. Lentiviral delivery in culture led to activation of the DNA damage response, in particular elevating levels of phosphorylated ataxia telangiectasia mutated (pATM) and γH2AX, but the optimised hSMN1 transgene showed some protective effects. Neonatal delivery of adeno-associated viral vector (AAV9) vector encoding the optimised transgene to the Smn2B/ mouse model of SMA resulted in a significant increase of SMN protein levels in liver and spinal cord. This work shows the potential of a novel codon-optimised hSMN1 transgene as a therapeutic strategy for SMA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Maps displaying features of the transfer plasmids encoding Co-hSMN1 or control eGFP.
Fig. 2: Lentiviral vector-mediated hSMN1 and Co-hSMN1 expression in mouse primary cortical neurons and rat primary motor neurons.
Fig. 3: Assessment of SMN protein levels in iPSC motor neurons.
Fig. 4: SMN levels in primary SMA type I patient fibroblasts following IDLV transduction.
Fig. 5: Restoration of gems in SMA type I fibroblasts transduced with lentiviral vectors encoding hSMN1 or Co-hSMN1.
Fig. 6: The effect of IDLV_CMV_Co-hSMN1 transduction on γH2AX foci in SMA type I fibroblasts.
Fig. 7: ATM and pATM in wild-type and SMA type I fibroblasts and SMA type I iPSC-derived motor neurons.
Fig. 8: Analysis of SMN levels following in vivo neonatal administration of AAV9 vectors expressing Co-hSMN1.

Similar content being viewed by others

Data availability

The data generated during this study are available within the published article and its supplementary files, or from the corresponding author on reasonable request.

References

  1. Lefebvre S, Burgen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterisation of a spinal muscular atrophy-determining gene. Cell. 1995;80:155–65.

    Article  PubMed  CAS  Google Scholar 

  2. Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA. 1999;96:6307–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AHM, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Human Mol Genet. 1999;8:1177–83.

    Article  CAS  Google Scholar 

  4. Butchbach MER. Copy number variations in the survival motor neuron genes: Implications for spinal muscular atrophy and other neurodegenerative diseases. Front Mol Biosci. 2016;3:7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Harada Y, Sutomo R, Sadewa A, Akutsu T, Takeshima Y, Wada H, et al. Correlation between SMN2 copy number and clinical phenotype of spinal muscular atrophy: three SMN2 copies fail to rescue some patients from the disease severity. J Neurol. 2002;249:1211–9.

    Article  PubMed  CAS  Google Scholar 

  6. Calucho MBS, Alías L, March F, Venceslá A, Rodríguez-Álvarez FJ, Aller E, et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28:208–15.

    Article  PubMed  Google Scholar 

  7. Singh RN, Howell MD, Ottesen EW, Singh NN. Diverse role of survival motor neuron protein. Biochemica et Biophysica Acta. 2017;1860:299–315.

    Article  CAS  Google Scholar 

  8. Gavrilina TO, McGovern VL, Workman E, Crawford TO, Gogliotti RG, DiDonato CJ, et al. Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle-specific SMN expression has no phenotypic effect. Human Mol Genet. 2008;17:1063–75.

    Article  CAS  Google Scholar 

  9. Hamilton G, Gillingwater TH. Spinal muscular atrophy: Going beyond the motor neuron. Trends Mol Med. 2013;19:40–50.

    Article  PubMed  CAS  Google Scholar 

  10. Singh NK, Singh NN, Androphy EJ, Singh RN. Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. 2006;26:1333–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Singh NN, Howell MD, Androphy EJ, Singh RN. How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Ther. 2017;24:520–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. New Engl J Med. 2017;377:1713–22.

    Article  PubMed  CAS  Google Scholar 

  13. Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. Risdiplam in Type 1 spinal muscular atrophy. New Engl J Med. 2021;384:915–23.

    Article  PubMed  CAS  Google Scholar 

  14. Blömer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol. 1997;71:6641–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Frankel D, Young J. HIV-1: Fifteen proteins and an RNA. Ann Rev Biochem. 1998;67:1–25.

    Article  PubMed  CAS  Google Scholar 

  16. Picanco-Castro V, de Sousa Russo-Carbolante EM, Tadeu, Covas D. Advances in lentiviral vectors: a patent review. Recent Patents DNA Gene Seq. 2012;6:82–90.

    Article  CAS  Google Scholar 

  17. Vigna E, Naldini L. Lentiviral vectors: Excellent tools for experimental gene transfer and promising candidates for gene therapy. J Gene Med. 2000;2:308–16.

    Article  PubMed  CAS  Google Scholar 

  18. Throm RE, Ouma AA, Zhou S, Chandrasekaran A, Lockey T, Greene M, et al. Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection. Blood. 2009;113:5104–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zhao H, Pestina TI, Nasimuzzaman M, Mehta P, Hargrove PW, Persons DA. Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene. Blood. 2009;113:5747–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Mantovani J, Charrier S, Eckenberg R, Saurin W, Danos O, Perea J, et al. Diverse genomic integration of a lentiviral vector developed for the treatment of Wiskott-Aldrich syndrome. J Gene Med. 2009;11:645–54.

    Article  PubMed  CAS  Google Scholar 

  21. Biffi A, Naldini L. Novel candidate disease for gene therapy: Metachromatic leukodystrophy. Expert Opin Biol Ther. 2007;7:1193–205.

    Article  PubMed  CAS  Google Scholar 

  22. Brown BD, Cantore A, Annoni A, Sergi LS, Lombardo A, Della Valle P, et al. A microRNA-regulated lentiviral vector mediates stable correction of hemophilia B mice. Blood. 2007;110:4144–52.

    Article  PubMed  CAS  Google Scholar 

  23. Jacome A, Navarro S, Río P, Yañez RM, González-Murillo A, Lozano ML, et al. Lentiviral-mediated genetic correction of hematopoietic and mesenchymal progenitor cells from Fanconi anemia patients. Mol Ther. 2009;17:1083–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Menzel O, Birraux J, Wildhaber BE, Jond C, Lasne F, Habre W, et al. Biosafety in ex vivo gene therapy and conditional ablation of lentivirally transduced hepatocytes in nonhuman primates. Mol Ther. 2009;17:1754–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, Mcguirk JP, et al. Primary analysis of juliet: A global, pivotal, phase 2 Trial of CTL019 in adult patients with relapsed or refractory diffuse large B-cell lymphoma. Blood. 2017;130:577.

    Google Scholar 

  26. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-Cell lymphoblastic leukemia. New Engl J Med. 2018;378:439–48.

    Article  PubMed  CAS  Google Scholar 

  27. Thompson AA, Walters MC, Kwiatkowski J, Rasko JEJ, Ribeil J-A, Hongeng S, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. New Engl J Med. 2018;378:1479–93.

    Article  PubMed  CAS  Google Scholar 

  28. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCcormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

    Article  PubMed  CAS  Google Scholar 

  29. Gaspar HB, Parsley KL, Howe S, King D, Gilmour KC, Sinclair J, et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet. 2004;364:2181–7.

    Article  PubMed  CAS  Google Scholar 

  30. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Investig. 2008;118:3143–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006;12:348–53.

    Article  PubMed  Google Scholar 

  32. Bowerman M, Murray LM, Beauvais A, Pinheiro B, Kothary R. A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology. Neuromusc Disord. 2012;22:263–76.

    Article  PubMed  Google Scholar 

  33. Boza-Moran MG, Martinez-Hernandez R, Bernal S, Wanisch K, Also-Rallo E, Le Heron A, et al. Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons. Sci Rep. 2015;5:11696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lu-Nguyen NB, Broadstock M, Yáñez-Muñoz RJ. Efficient expression of Igf-1 from lentiviral vectors protects in vitro but does not mediate behavioral recovery of a Parkinsonian lesion in rats. Human Gene Ther. 2015;26:719–33.

    Article  CAS  Google Scholar 

  35. Peluffo H, Foster E, Ahmed SG, Lago N, Hutson TH, Moon L, et al. Efficient gene expression from integration-deficient lentiviral vectors in the spinal cord. Gene Ther. 2013;20:645–57.

    Article  PubMed  CAS  Google Scholar 

  36. Maury Y, Come J, Piskorowski RA, Salah-Mohellibi N, Chevaleyre V, Peschanski M, et al. Combinatorial analysis of developmental cues efficiently converts human pluripotent stem cells into multiple neuronal subtypes. Nat Biotechnol. 2015;33:89–96.

    Article  PubMed  CAS  Google Scholar 

  37. Šoltić D, Bowerman M, Stock J, Shorrock HK, Gillingwater TH, Fuller HR. Multi-study proteomic and bioinformatic identification of molecular overlap between Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). Brain Sci. 2018;8:212.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Young PJ, Le TT, Thi Man N, Burghes AHM, Morris GE. The relationship between SMN, the spinal muscular atrophy protein, and nuclear-coiled bodies in differentiated tissues and cultured cells. Exp Cell Res. 2000;256:365–74.

    Article  PubMed  CAS  Google Scholar 

  39. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with imageJ. Biophotonics Int. 2004;11:36–41.

    Google Scholar 

  40. Vyas S, Bechade C, Riveau B, Downward J, Triller A. Involvement of survival motor neuron (SMN) protein in cell death. Human Mol Genet. 2002;11:2751–64.

    Article  CAS  Google Scholar 

  41. Parker GC, Li XL, Anguelov RA, Toth G, Cristescu A, Acsadi G. Survival motor neuron protein regulates apoptosis in an in vitro model of spinal muscular atrophy. Neurotox Res. 2008;13:39–48.

    Article  PubMed  CAS  Google Scholar 

  42. Young PJ, Day PM, Zhou J, Androphy EJ, Morris GE, Lorson CL. A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J Biol Chem. 2002;277:2852–9.

    Article  PubMed  CAS  Google Scholar 

  43. Kannan A, Bhatia K, Branzei D, Gangwani L. Combined deficiency of Senataxin and DNA-PKcs causes DNA damage accumulation and neurodegeneration in spinal muscular atrophy. Nucleic Acids Res. 2018;46:8326–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.

    Article  PubMed  CAS  Google Scholar 

  45. Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999;146:905–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Martin SJ, Green DR. Protease activation during apoptosis: Death by a thousand cuts? Cell. 1995;82:349–52.

    Article  PubMed  CAS  Google Scholar 

  47. Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. Mol Cell. 2017;66:801–17.

    Article  PubMed  CAS  Google Scholar 

  48. Walther W, Stein U. Viral vectors for gene transfer: A review of their use in the treatment of human diseases. Drugs. 2000;60:249–71.

    Article  PubMed  CAS  Google Scholar 

  49. Azzouz M, Le T, Ralph GS, Walmsley L, Monani UR, Lee DC, et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Investig. 2004;114:1726–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. DiDonato CJ, Parks RJ, Kothary R. Development of a gene therapy strategy for the restoration of survival motor neuron protein expression: implications for spinal muscular atrophy therapy. Human Gene Ther. 2003;14:179–88.

    Article  CAS  Google Scholar 

  51. Rashnonejad A, Chermahini GA, Li SY, Ozkinay F, Gao GP. Large-scale production of adeno-associated viral vector Serotype-9 carrying the human survival motor neuron gene. Mol Biotechnol. 2016;58:30–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Feng M, Liu C, Xia Y, Liu B, Zhou M, Li Z, et al. Restoration of SMN expression in mesenchymal stem cells derived from gene-targeted patient-specific iPSCs. J Mol Histol. 2018;49:27–37.

    Article  PubMed  CAS  Google Scholar 

  53. Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ, et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med. 2010;2:35ra42.

    Article  PubMed  Google Scholar 

  54. Foust KD, Wang XY, McGovern VL, Braun L, Bevan AK, Haidet AM, et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. 2010;28:271–U126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O’Riordan CR, et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest. 2010;120:1253–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P, et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet. 2011;20:681–93.

    Article  PubMed  CAS  Google Scholar 

  57. Van Alstyne M, Tattoli I, Delestree N, Recinos Y, Workman E, Shihabuddin LS, et al. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. 2021;24:930.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bowerman M, Becker CG, Yáñez-Muñoz RJ, Ning K, Wood M, Gillingwater TH, et al. Therapeutic strategies for spinal muscular atrophy: SMN and beyond. Dis Models Mech. 2017;10:943–54.

    Article  CAS  Google Scholar 

  59. Rashnonejad A, Chermahini GA, Gunduz C, Onay H, Aykut A, Durmaz B, et al. Fetal gene therapy using a single injection of recombinant AAV9 Rescued SMA phenotype in Mice. Mol Ther. 2019;27:2123–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Ahmed SG, Waddington SN, Boza-Moran MG, Yáñez-Muñoz RJ. High-efficiency transduction of spinal cord motor neurons by intrauterine delivery of integration-deficient lentiviral vectors. J. Controlled Release. 2018;273:99–107.

    Article  CAS  Google Scholar 

  61. Sareen D, Ebert AD, Heins BM, Mcgivern JV, Ornelas L, Svendsen CN. Inhibition of apoptosis blocks human motor neuron cell death in a stem cell model of spinal muscular atrophy. Plos One. 2012;7:e39113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, et al. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc Natl Acad Sci USA. 2017;114:E2347–E56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Mutsaers CA, Wishart TM, Lamont DJ, Riessland M, Schreml J, Comley LH, et al. Reversible molecular pathology of skeletal muscle in spinal muscular atrophy. Human Mol Genet. 2011;20:4334–44.

    Article  CAS  Google Scholar 

  64. Kajaste-Rudnitski A, Naldini L. Cellular innate immunity and restriction of viral infection: Implications for lentiviral gene therapy in human hematopoietic cells. Human Gene Ther. 2015;26:201–9.

    Article  CAS  Google Scholar 

  65. Maillard PV, van der Veen AG, Poirier EZ, Reis e Sousa C. Slicing and dicing viruses: Antiviral RNA interference in mammals. Embo J. 2019;38:e100941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Morales AJ, Carrero JA, Hung PJ, Tubbs AT, Andrews JM, Edelson BT, et al. A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages. Elife. 2017;6:e24655.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Hartlova A, Erttmann SF, Raffi FAM, Schmalz AM, Resch U, Anugula S, et al. DNA damage primes the Type I interferon system via the Cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–43.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding

EMC was partially funded by a scholarship from Royal Holloway University of London. NAMN was partially funded by a scholarship and student stipend, from Royal Holloway University of London and The Spinal Muscular Atrophy Trust. HF acknowledges financial support for SMA research from the Great Ormond Street Hospital Charity (GOSH) which funds SB (Grant No. V5018). RJY-M acknowledges general financial support from SMA UK (formerly The SMA Trust), through the UK SMA Research Consortium, for SMA research in his laboratory. MB acknowledges general financial support from SMA UK, Muscular Dystrophy UK, Action Medical Research, SMA Angels Charity and Academy of Medical Sciences for SMA research in her laboratory.

Author information

Authors and Affiliations

Authors

Contributions

EMC and NAMN performed in vitro experimentation and analyses. MB performed in vivo injections and tissue harvests whilst SB analysed tissue from in vivo experiments. HF provided support for animal experimentation. RJY-M provided conceptual support and interpretation of results. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Rafael J. Yáñez-Muñoz.

Ethics declarations

Competing interests

NAMN, EMC, and RJY-M have filed a patent application on the uses of the novel SMN transgene reported in this manuscript. SB, HRF, and MB report no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nafchi, N.A.M., Chilcott, E.M., Brown, S. et al. Enhanced expression of the human Survival motor neuron 1 gene from a codon-optimised cDNA transgene in vitro and in vivo. Gene Ther 30, 812–825 (2023). https://doi.org/10.1038/s41434-023-00406-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00406-0

Search

Quick links