Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene delivery to the spinal cord using MRI-guided focused ultrasound

Abstract

Non-invasive gene delivery across the blood–spinal cord barrier (BSCB) remains a challenge for treatment of spinal cord injury and disease. Here, we demonstrate the use of magnetic resonance image-guided focused ultrasound (MRIgFUS) to mediate non-surgical gene delivery to the spinal cord using self-complementary adeno-associated virus serotype 9 (scAAV9). scAAV9 encoding green fluorescent protein (GFP) was injected intravenously in rats at three dosages: 4 × 108, 2 × 109 and 7 × 109 vector genomes per gram (VG g−1). MRIgFUS allowed for transient, targeted permeabilization of the BSCB through the interaction of focused ultrasound (FUS) with systemically injected Definity lipid-shelled microbubbles. Viral delivery at 2 × 109 and 7 × 109 VG g−1 leads to robust GFP expression in FUS-targeted regions of the spinal cord. At a dose of 2 × 109 VG g−1, GFP expression was found in 36% of oligodendrocytes, and in 87% of neurons in FUS-treated areas. FUS applications to the spinal cord could address a long-term goal of gene therapy: delivering vectors from the circulation to diseased areas in a non-invasive manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goins WF, Cohen JB, Glorioso JC . Gene therapy for the treatment of chronic peripheral nervous system pain. Neurobiol Dis 2012; 48: 255–270.

    Article  CAS  Google Scholar 

  2. Romero MI, Rangappa N, Garry MG, Smith GM . Functional regeneration of chronically injured sensory afferents into adult spinal cord after neurotrophin gene therapy. J Neurosci 2001; 21: 8408–8416.

    Article  CAS  Google Scholar 

  3. Nagahara AH, Tuszynski MH . Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discov 2011; 10: 209–219.

    Article  CAS  Google Scholar 

  4. Passini MA, Bu J, Roskelley EM, Richards AM, Sardi SP, O’Riordan CR et al. CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 2010; 120: 1253–1264.

    Article  CAS  Google Scholar 

  5. Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM et al. Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 2010; 28: 271–274.

    Article  CAS  Google Scholar 

  6. Bevan AK, Duque S, Foust KD, Morales PR, Braun L, Schmelzer L et al. Systemic gene delivery in large species for targeting spinal cord, brain, and peripheral tissues for pediatric disorders. Mol Ther 2011; 19: 1971–1980.

    Article  CAS  Google Scholar 

  7. Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S et al. Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose-response study in mice and nonhuman primates. Mol Ther 2014; 23: 477–487.

    Article  Google Scholar 

  8. Lepore AC, Haenggeli C, Gasmi M, Bishop KM, Bartus RT, Maragakis NJ et al. Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS. Brain Res 2007; 1185: 256–265.

    Article  CAS  Google Scholar 

  9. Reese TS, Karnovsky MJ . Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 1967; 34: 207–217.

    Article  CAS  Google Scholar 

  10. Pardridge WM . Blood-brain barrier delivery. Drug Discov Today 2007; 12: 54–61.

    Article  CAS  Google Scholar 

  11. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA . Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology 2001; 220: 640–646.

    Article  CAS  Google Scholar 

  12. Sheikov N, McDannold N, Sharma S, Hynynen K . Effect of focused ultrasound applied with an ultrasound contrast agent on the tight junctional integrity of the brain microvascular endothelium. Ultrasound Med Biol 2008; 34: 1093–1104.

    Article  Google Scholar 

  13. Zhang Z, Xue Y, Liu Y, Shang X . Additive effect of low-frequency ultrasound and endothelial monocyte-activating polypeptide II on blood-tumor barrier in rats with brain glioma. Neurosci Lett 2010; 481: 21–25.

    Article  CAS  Google Scholar 

  14. Fan L, Liu Y, Ying H, Xue Y, Zhang Z, Wang P et al. Increasing of blood-tumor barrier permeability through paracellular pathway by low-frequency ultrasound irradiation in vitro. J Mol Neurosci 2011; 43: 541–548.

    Article  CAS  Google Scholar 

  15. Xia CY, Zhang Z, Xue YX, Wang P, Liu YH . Mechanisms of the increase in the permeability of the blood-tumor barrier obtained by combining low-frequency ultrasound irradiation with small-dose bradykinin. J Neurooncol 2009; 94: 41–50.

    Article  CAS  Google Scholar 

  16. Deng J, Huang Q, Wang F, Liu Y, Wang Z, Wang Z et al. The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles. J Mol Neurosci 2012; 46: 677–687.

    Article  CAS  Google Scholar 

  17. Hynynen K, McDannold N, Vykhodtseva N, Raymond S, Weissleder R, Jolesz FA et al. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J Neurosurg 2006; 105: 445–454.

    Article  CAS  Google Scholar 

  18. Kinoshita M, McDannold N, Jolesz FA, Hynynen K . Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun 2006; 340: 1085–1090.

    Article  CAS  Google Scholar 

  19. Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ . Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. PLoS One 2008; 3: e2175.

    Article  Google Scholar 

  20. Jordao JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J et al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer’s disease. PLoS One 2010; 5: e10549.

    Article  Google Scholar 

  21. Thevenot E, Jordao JF, O’Reilly MA, Markham K, Weng YQ, Foust KD et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther 2012; 23: 1144–1155.

    Article  CAS  Google Scholar 

  22. Grimm D, Kay MA . From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3: 281–304.

    Article  CAS  Google Scholar 

  23. Burgess A, Ayala-Grosso CA, Ganguly M, Jordao JF, Aubert I, Hynynen K . Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One 2011; 6: e27877.

    Article  CAS  Google Scholar 

  24. Chen L, Mu Z, Hachem P, Ma CM, Wallentine A, Pollack A . MR-guided focused ultrasound: enhancement of intratumoral uptake of [(3)H]-docetaxel in vivo. Phys Med Biol 2010; 55: 7399–7410.

    Article  CAS  Google Scholar 

  25. Jordao JF, Thevenot E, Markham-Coultes K, Scarcelli T, Weng YQ, Xhima K et al. Amyloid-beta plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp Neurol 2013; 248: 16–29.

    Article  CAS  Google Scholar 

  26. Scarcelli T, Jordao JF, O’Reilly MA, Ellens N, Hynynen K, Aubert I . Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul 2014; 7: 304–307.

    Article  Google Scholar 

  27. Burgess A, Dubey S, Yeung S, Hough O, Eterman N, Aubert I et al. Alzheimer’s disease in a mouse model: MR imaging-guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior. Radiology 2014; 273: 736–745.

    Article  Google Scholar 

  28. Fry FJ, Barger JE . Acoustical properties of the human skull. J Acoust Soc Am 1978; 63: 1576–1590.

    Article  CAS  Google Scholar 

  29. Kaufman JJ, Einhorn TA . Ultrasound assessment of bone. J Bone Miner Res 1993; 8: 517–525.

    Article  CAS  Google Scholar 

  30. Wachsmuth J, Chopra R, Hynynen K . Feasibility of transient image‐guided blood‐spinal cord barrier disruption. AIP Conf Proc 2009; 1113: 256–259.

    Article  Google Scholar 

  31. Helfield BL, Huo X, Williams R, Goertz DE . The effect of preactivation vial temperature on the acoustic properties of Definity. Ultrasound Med Biol 2012; 38: 1298–1305.

    Article  Google Scholar 

  32. Goodman BS, Posecion LW, Mallempati S, Bayazitoglu M . Complications and pitfalls of lumbar interlaminar and transforaminal epidural injections. Curr Rev Musculoskelet Med 2008; 1: 212–222.

    Article  Google Scholar 

  33. Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 2011; 20: 681–693.

    Article  CAS  Google Scholar 

  34. Vorbrodt AW, Dobrogowska DH, Tarnawski M . Immunogold study of interendothelial junction-associated and glucose transporter proteins during postnatal maturation of the mouse blood-brain barrier. J Neurocytol 2001; 30: 705–716.

    Article  CAS  Google Scholar 

  35. Vannucci SJ . Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J Neurochem 1994; 62: 240–246.

    Article  CAS  Google Scholar 

  36. Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK . Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 2009; 27: 59–65.

    Article  CAS  Google Scholar 

  37. Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM et al. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 2009; 17: 1187–1196.

    Article  CAS  Google Scholar 

  38. Gong Y, Mu D, Prabhakar S, Moser A, Musolino P, Ren J et al. Adeno-associated virus serotype 9-mediated gene therapy for X-linked adrenoleukodystrophy. Mol Ther, [Internet] 2015; e-pub ahead of print 16 January 2015; doi:10.1038/mt.2015.6.

  39. Gray SJ, Matagne V, Bachaboina L, Yadav S, Ojeda SR, Samulski RJ . Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 2011; 19: 1058–1069.

    Article  CAS  Google Scholar 

  40. Brody IA, Wilkins RH . Brown-Sequard syndrome. Arch Neurol 1968; 19: 347–348.

    Article  CAS  Google Scholar 

  41. Wang DB, Dayton RD, Henning PP, Cain CD, Zhao LR, Schrott LM et al. Expansive gene transfer in the rat CNS rapidly produces amyotrophic lateral sclerosis relevant sequelae when TDP-43 is overexpressed. Mol Ther 2010; 18: 2064–2074.

    Article  CAS  Google Scholar 

  42. Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G et al. Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 2008; 19: 1359–1368.

    Article  CAS  Google Scholar 

  43. Shen S, Bryant KD, Brown SM, Randell SH, Asokan A . Terminal N-linked galactose is the primary receptor for adeno-associated virus 9. J Biol Chem 2011; 286: 13532–13540.

    Article  CAS  Google Scholar 

  44. Snyder BR, Gray SJ, Quach ET, Huang JW, Leung CH, Samulski RJ et al. Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery. Hum Gene Ther 2011; 22: 1129–1135.

    Article  CAS  Google Scholar 

  45. Wang S, Samiotaki G, Olumolade O, Feshitan JA, Konofagou EE . Microbubble type and distribution dependence of focused ultrasound-induced blood-brain barrier opening. Ultrasound Med Biol 2014; 40: 130–137.

    Article  Google Scholar 

  46. Oakden W, Kwiecien JM, O’Reilly MA, Lake EM, Akens MK, Aubert I et al. A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles. J Neurosci Methods 2014; 235C: 92–100.

    Article  Google Scholar 

  47. O’Reilly MA, Huang Y, Hynynen K . The impact of standing wave effects on transcranial focused ultrasound disruption of the blood-brain barrier in a rat model. Phys Med Biol 2010; 55: 5251–5267.

    Article  Google Scholar 

  48. O’Reilly MA, Hynynen K . Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology 2012; 263: 96–106.

    Article  Google Scholar 

  49. Arvanitis CD, Livingstone MS, Vykhodtseva N, McDannold N . Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS One 2012; 7: e45783.

    Article  CAS  Google Scholar 

  50. Chopra R, Curiel L, Staruch R, Morrison L, Hynynen K . An MRI-compatible system for focused ultrasound experiments in small animal models. Med Phys 2009; 36: 1867–1874.

    Article  Google Scholar 

  51. de Crespigny A, Bou-Reslan H, Nishimura MC, Phillips H, Carano RA, D’Arceuil HE . 3D micro-CT imaging of the postmortem brain. J Neurosci Methods 2008; 171: 207–213.

    Article  Google Scholar 

  52. Hakam A, Nasir A, Raghuwanshi R, Smith PV, Crawley S, Kaiser HE et al. Value of multilevel sectioning for improved detection of micrometastases in sentinel lymph nodes in invasive squamous cell carcinoma of the vulva. Anticancer Res 2004; 24: 1281–1286.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for Spinal Trauma, Sunnybrook Health Sciences Centre, CIHR FRN 93603 (IA), NIH grant R01-EB003268 (KH) and the Canada Research Chair Program (KH). We thank Dr Paul Nagy for helping to edit this manuscript. We also thank Dr Julie Korich and MBF Bioscience for their counsel in regard to cell counting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Aubert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber-Adrian, D., Thévenot, E., O'Reilly, M. et al. Gene delivery to the spinal cord using MRI-guided focused ultrasound. Gene Ther 22, 568–577 (2015). https://doi.org/10.1038/gt.2015.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.25

This article is cited by

Search

Quick links