Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Artificial microRNA interference targeting AT1a receptors in paraventricular nucleus attenuates hypertension in rats

Subjects

Abstract

Excessive sympathetic activity has a crucial role in the initiation and progression of chronic structural alterations in the heart and vessels associated with hypertension. Angiotensin II type 1a receptors (AT1aR) in paraventricular nucleus (PVN) are involved in sympathetic overdrive and hypertension. The present study was designed to investigate the cardiovascular beneficial effects of the AT1aR gene silence in the PVN in hypertension. The PVN microinjection of recombinant adenoviral vectors expressing either artificial microRNA (amiRNA) targeting AT1a receptors (Ad-miR-AT1a) or control microRNA (Ad-miR-Con) were carried out in spontaneously hypertensive rats (SHR) and normotensive Wistar rats. The vectors were labels with green fluorescent protein (GFP). The successful amiRNA interference was confirmed by the AT1 receptors reduction and the GFP expression in the PVN. Significant depressor effects were observed from day 5 to day 20 after Ad-miR-AT1a treatment in SHR. Ad-miR-AT1a treatment decreased the ratio of left ventricular weight to body weight, cross-sectional areas of myocytes, myocardial fibrosis, media thickness, and the media/lumen ratio of the aorta and the mesenteric artery in SHR. The amiRNA interference reduced the basal sympathetic activity, cardiac sympathetic afferent reflex, plasma norepinephrine and plasma angiotensin II in SHR. These results indicate that amiRNA interference targeting AT1aR in the PVN decreases arterial blood pressure, blunts sympathetic activity and improves myocardial and vascular remodeling in SHR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Mancia G, Grassi G, Giannattasio C, Seravalle G . Sympathetic activation in the pathogenesis of hypertension and progression of organ damage. Hypertension 1999; 34: 724–728.

    Article  CAS  PubMed Central  Google Scholar 

  2. Messerli FH, Williams B, Ritz E . Essential hypertension. Lancet 2007; 370: 591–603.

    Article  CAS  PubMed Central  Google Scholar 

  3. Levick SP, Murray DB, Janicki JS, Brower GL . Sympathetic nervous system modulation of inflammation and remodeling in the hypertensive heart. Hypertension 2010; 55: 270–276.

    Article  CAS  PubMed Central  Google Scholar 

  4. Fisher JP, Fadel PJ . Therapeutic strategies for targeting excessive central sympathetic activation in human hypertension. Exp Physiol 2010; 95: 572–580.

    Article  CAS  PubMed Central  Google Scholar 

  5. Grassi G, Seravalle G, Quarti-Trevano F . The ‘neuroadrenergic hypothesis’ in hypertension: current evidence. Exp Physiol 2010; 95: 581–586.

    Article  PubMed Central  Google Scholar 

  6. Benarroch EE . Paraventricular nucleus, stress response, and cardiovascular disease. Clin Auton Res 2005; 15: 254–263.

    Article  PubMed Central  Google Scholar 

  7. Allen AM . Inhibition of the hypothalamic paraventricular nucleus in spontaneously hypertensive rats dramatically reduces sympathetic vasomotor tone. Hypertension 2002; 39: 275–280.

    Article  CAS  PubMed Central  Google Scholar 

  8. Li DP, Pan HL . Glutamatergic inputs in the hypothalamic paraventricular nucleus maintain sympathetic vasomotor tone in hypertension. Hypertension 2007; 49: 916–925.

    Article  CAS  PubMed Central  Google Scholar 

  9. Ciriello J, Kline RL, Zhang TX, Caverson MM . Lesions of the paraventricular nucleus alter the development of spontaneous hypertension in the rat. Brain Res 1984; 310: 355–359.

    Article  CAS  PubMed Central  Google Scholar 

  10. Takeda K, Nakata T, Takesako T, Itoh H, Hirata M, Kawasaki S et al. Sympathetic inhibition and attenuation of spontaneous hypertension by PVN lesions in rats. Brain Res 1991; 543: 296–300.

    Article  CAS  PubMed Central  Google Scholar 

  11. Reja V, Goodchild AK, Phillips JK, Pilowsky PM . Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats. Clin Exp Pharmacol Physiol 2006; 33: 690–695.

    Article  CAS  PubMed Central  Google Scholar 

  12. Chen AD, Zhang SJ, Yuan N, Xu Y, De W, Gao XY et al. AT1 receptors in paraventricular nucleus contribute to sympathetic activation and enhanced cardiac sympathetic afferent reflex in renovascular hypertensive rats. Exp Physiol 2011; 96: 94–103.

    Article  CAS  PubMed Central  Google Scholar 

  13. Davisson RL, Oliverio MI, Coffman TM, Sigmund CD . Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest 2000; 106: 103–106.

    Article  CAS  PubMed Central  Google Scholar 

  14. Northcott CA, Watts S, Chen Y, Morris M, Chen A, Haywood JR . Adenoviral inhibition of AT1a receptors in the paraventricular nucleus inhibits acute increases in mean arterial blood pressure in the rat. Am J Physiol Regul Integr Comp Physiol 2010; 299: R1202–R1211.

    Article  CAS  Google Scholar 

  15. Goldstein DS . Plasma catecholamines and essential hypertension. An analytical review. Hypertension 1983; 5: 86–99.

    Article  CAS  Google Scholar 

  16. Tsoporis J, Leenen FH . Effects of arterial vasodilators on cardiac hypertrophy and sympathetic activity in rats. Hypertension 1988; 11: 376–386.

    Article  CAS  Google Scholar 

  17. Zhu GQ, Xu Y, Zhou LM, Li YH, Fan LM, Wang W et al. Enhanced cardiac sympathetic afferent reflex involved in sympathetic overactivity in renovascular hypertensive rats. Exp Physiol 2009; 94: 785–794.

    Article  Google Scholar 

  18. Savage DD, Garrison RJ, Kannel WB, Levy D, Anderson SJ, Stokes III J et al. The spectrum of left ventricular hypertrophy in a general population sample: the Framingham Study. Circulation 1987; 75: I26–I33.

    CAS  PubMed  Google Scholar 

  19. Weber KT, Brilla CG . Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991; 83: 1849–1865.

    Article  CAS  Google Scholar 

  20. Owens GK, Schwartz SM, McCanna M . Evaluation of medial hypertrophy in resistance vessels of spontaneously hypertensive rats. Hypertension 1988; 11: 198–207.

    Article  CAS  PubMed Central  Google Scholar 

  21. Intengan HD, Schiffrin EL . Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 2001; 38: 581–587.

    Article  CAS  PubMed Central  Google Scholar 

  22. Smeda JS, Lee RM, Forrest JB . Prenatal and postnatal hydralazine treatment does not prevent renal vessel wall thickening in SHR despite the absence of hypertension. Circ Res 1988; 63: 534–542.

    Article  CAS  PubMed Central  Google Scholar 

  23. Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP . Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007; 115: 1999–2005.

    Article  PubMed Central  Google Scholar 

  24. Chen YF, Chen H, Hoffmann A, Cool DR, Diz DI, Chappell MC et al. Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 2006; 47: 230–237.

    Article  CAS  PubMed Central  Google Scholar 

  25. Makino N, Sugano M, Ohtsuka S, Sawada S, Hata T . Chronic antisense therapy for angiotensinogen on cardiac hypertrophy in spontaneously hypertensive rats. Cardiovasc Res 1999; 44: 543–548.

    Article  CAS  PubMed Central  Google Scholar 

  26. Averill DB, Tsuchihashi T, Khosla MC, Ferrario CM . Losartan, nonpeptide angiotensin II-type 1 (AT1) receptor antagonist, attenuates pressor and sympathoexcitatory responses evoked by angiotensin II and L-glutamate in rostral ventrolateral medulla. Brain Res 1994; 665: 245–252.

    Article  CAS  PubMed Central  Google Scholar 

  27. Saad WA, Camargo LA, Guarda IF, Santos TA . Subfornical organ mediates pressor effect of angiotensin: Influence of nitric oxide synthase inhibitors, AT(1) and AT(2) angiotensin antagonist's receptors. J Am Soc Hypertens 2008; 2: 326–331.

    Article  PubMed Central  Google Scholar 

  28. Katsunuma N, Tsukamoto K, Ito S, Kanmatsuse K . Enhanced angiotensin-mediated responses in the nucleus tractus solitarii of spontaneously hypertensive rats. Brain Res Bull 2003; 60: 209–214.

    Article  CAS  PubMed Central  Google Scholar 

  29. Kubo T, Hagiwara Y, Endo S, Fukumori R . Activation of hypothalamic angiotensin receptors produces pressor responses via cholinergic inputs to the rostral ventrolateral medulla in normotensive and hypertensive rats. Brain Res 2002; 953: 232–245.

    Article  CAS  PubMed Central  Google Scholar 

  30. Davidson BL, Allen ED, Kozarsky KF, Wilson JM, Roessler BJ . A model system for in vivo gene transfer into the central nervous system using an adenoviral vector. Nat Genet 1993; 3: 219–223.

    Article  CAS  PubMed Central  Google Scholar 

  31. Toscano MG, Romero Z, Munoz P, Cobo M, Benabdellah K, Martin F . Physiological and tissue-specific vectors for treatment of inherited diseases. Gene Ther 2011; 18: 117–127.

    Article  CAS  PubMed Central  Google Scholar 

  32. Lenkei Z, Corvol P, Llorens-Cortes C . The angiotensin receptor subtype AT1A predominates in rat forebrain areas involved in blood pressure, body fluid homeostasis and neuroendocrine control. Brain Res Mol Brain Res 1995; 30: 53–60.

    Article  CAS  PubMed Central  Google Scholar 

  33. Sigmund CD, Davisson RL . Targeting brain AT1 receptors by RNA interference. Hypertension 2006; 47: 145–146.

    Article  CAS  PubMed Central  Google Scholar 

  34. Vazquez J, Correa de Adjounian MF, Sumners C, Gonzalez A, ez-Freire C, Raizada MK . Selective silencing of angiotensin receptor subtype 1a (AT1aR) by RNA interference. Hypertension 2005; 45: 115–119.

    Article  CAS  PubMed Central  Google Scholar 

  35. Bains JS, Potyok A, Ferguson AV . Angiotensin II actions in paraventricular nucleus: functional evidence for neurotransmitter role in efferents originating in subfornical organ. Brain Res 1992; 599: 223–229.

    Article  CAS  Google Scholar 

  36. Georgiadis A, Tschernutter M, Bainbridge JW, Robbie SJ, McIntosh J, Nathwani AC et al. AAV-mediated knockdown of peripherin-2 in vivo using miRNA-based hairpins. Gene Ther 2010; 17: 486–493.

    Article  CAS  Google Scholar 

  37. Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W . Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 2008; 148: 684–693.

    Article  CAS  PubMed Central  Google Scholar 

  38. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 2008; 105: 5868–5873.

    Article  CAS  Google Scholar 

  39. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R . Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 2006; 20: 515–524.

    Article  CAS  Google Scholar 

  40. Shi Z, Chen AD, Xu Y, Chen Q, Gao XY, Wang W et al. Long-term administration of tempol attenuates postinfarct ventricular dysfunction and sympathetic activity in rats. Pflugers Arch 2009; 458: 247–257.

    Article  CAS  Google Scholar 

  41. Bello RM, Li H, Sun Z . Heart-specific inhibition of protooncogene c-myc attenuates cold-induced cardiac hypertrophy. Gene Ther 2007; 14: 1406–1416.

    Article  Google Scholar 

  42. Gao S, Long CL, Wang RH, Wang H . K(ATP) activation prevents progression of cardiac hypertrophy to failure induced by pressure overload via protecting endothelial function. Cardiovasc Res 2009; 83: 444–456.

    Article  CAS  PubMed Central  Google Scholar 

  43. Bagnost T, Ma L, da Silva RF, Rezakhaniha R, Houdayer C, Stergiopulos N et al. Cardiovascular effects of arginase inhibition in spontaneously hypertensive rats with fully developed hypertension. Cardiovasc Res 2010; 87: 569–577.

    Article  CAS  PubMed Central  Google Scholar 

  44. Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T . Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation 2009; 119: 978–986.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Peng Sun and Juan Gao for support in histological analyses. This work was supported by the Chinese National Natural Science Fund (30870908 and 30670768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G-Q Zhu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, ZD., Zhang, L., Shi, Z. et al. Artificial microRNA interference targeting AT1a receptors in paraventricular nucleus attenuates hypertension in rats. Gene Ther 19, 810–817 (2012). https://doi.org/10.1038/gt.2011.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.145

Keywords

This article is cited by

Search

Quick links