Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity

Abstract

Regulation of gene expression in immune cells is known to be under genetic control, and likely contributes to susceptibility to autoimmune diseases such as multiple sclerosis (MS). How this occurs in concert across multiple immune cell types is poorly understood. Using a mouse model that harnesses the genetic diversity of wild-derived mice, more accurately reflecting genetically diverse human populations, we provide an extensive characterization of the genetic regulation of gene expression in five different naive immune cell types relevant to MS. The immune cell transcriptome is shown to be under profound genetic control, exhibiting diverse patterns: global, cell-specific and sex-specific. Bioinformatic analysis of the genetically controlled transcript networks reveals reduced cell type specificity and inflammatory activity in wild-derived PWD/PhJ mice, compared with the conventional laboratory strain C57BL/6J. Additionally, candidate MS-GWAS (genome-wide association study candidate genes for MS susceptibility) genes were significantly enriched among transcripts overrepresented in C57BL/6J cells compared with PWD. These expression level differences correlate with robust differences in susceptibility to experimental autoimmune encephalomyelitis, the principal model of MS, and skewing of the encephalitogenic T-cell responses. Taken together, our results provide functional insights into the genetic regulation of the immune transcriptome, and shed light on how this in turn contributes to susceptibility to autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Alonso A, Hernán MA . Temporal trends in the incidence of multiple sclerosis: a systematic review. Neurology 2008; 71: 129–135.

    Article  Google Scholar 

  2. Smolen JS, Aletaha D, McInnes IB . Rheumatoid arthritis. Lancet 2016, e-pub ahead of print 3 May 2016 doi:10.1016/S0140-6736(16)30173-8.

    Article  CAS  Google Scholar 

  3. Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ . Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39: 481–497.

    Article  Google Scholar 

  4. Uramoto KM, Michet Jr CJ, Thumboo J, Sunku J, O'Fallon WM, Gabriel SE . Trends in the incidence and mortality of systemic lupus erythematosus, 1950–1992. Arthritis Rheum 1999; 42: 46–50.

    Article  CAS  Google Scholar 

  5. American Autoimmune Related Diseases Association. The Cost Burden of Autoimmune Disease: The Latest Front in the War on Healthcare Spending. National Coalition of Autoimmune Patient Groups (NCAPG), 2011, Available at www.aarda.org.

  6. Hollenbach JA, Oksenberg JR . The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun 2015; 64: 13–25.

    Article  CAS  Google Scholar 

  7. Hussman JP, Beecham AH, Schmidt M, Martin ER, McCauley JL, Vance JM et al. GWAS analysis implicates NF-kappaB-mediated induction of inflammatory T cells in multiple sclerosis. Genes Immunity 2016; 17: 305–312.

    Article  CAS  Google Scholar 

  8. White MA, Ane C, Dewey CN, Larget BR, Payseur BA . Fine-scale phylogenetic discordance across the house mouse genome. PLoS Genet 2009; 5: e1000729.

    Article  Google Scholar 

  9. Gregorova S, Forejt J . PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies—a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol 2000; 46: 31–41.

    CAS  Google Scholar 

  10. Salcedo T, Geraldes A, Nachman MW . Nucleotide variation in wild and inbred mice. Genetics 2007; 177: 2277–2291.

    Article  CAS  Google Scholar 

  11. Gregorova S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL et al. Mouse consomic strains: exploiting genetic divergence between Mus m musculus and Mus m domesticus subspecies. Genome Res 2008; 18: 509–515.

    Article  CAS  Google Scholar 

  12. Grubb SC, Maddatu TP, Bult CJ, Bogue MA . Mouse phenome database. Nucleic acids Res 2009; 37: D720–D730.

    Article  CAS  Google Scholar 

  13. Balcova M, Faltusova B, Gergelits V, Bhattacharyya T, Mihola O, Trachtulec Z et al. Hybrid sterility locus on chromosome X controls meiotic recombination rate in mouse. PLoS Genet 2016; 12: e1005906.

    Article  Google Scholar 

  14. Bearoff F, Case LK, Krementsov DN, Wall EH, Saligrama N, Blankenhorn EP et al. Identification of genetic determinants of the sexual dimorphism in CNS autoimmunity. PLoS One 2015; 10: e0117993.

    Article  Google Scholar 

  15. Beecham AH, Patsopoulos NA, Xifara DK, Davis MF, Kemppinen A, Cotsapas C et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 2013; 45: 1353–1360.

    Article  CAS  Google Scholar 

  16. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012; 491: 119–124.

    Article  CAS  Google Scholar 

  17. Cotsapas C, Voight BF, Rossin E, Lage K, Neale BM, Wallace C et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet 2011; 7: e1002254.

    Article  CAS  Google Scholar 

  18. Werling DM, Parikshak NN, Geschwind DH . Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat Commun 2016; 7: 10717.

    Article  CAS  Google Scholar 

  19. Basu SN, Kollu R, Banerjee-Basu S . AutDB: a gene reference resource for autism research. Nucleic Acids Res 2009; 37: D832–D836.

    Article  CAS  Google Scholar 

  20. Corvol JC, Pelletier D, Henry RG, Caillier SJ, Wang J, Pappas D et al. Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proc Natl Acad Sci USA 2008; 105: 11839–11844.

    Article  CAS  Google Scholar 

  21. Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.

    Article  CAS  Google Scholar 

  22. Harbo HF, Gold R, Tintore M . Sex and gender issues in multiple sclerosis. Ther Adv Neurol Disord 2013; 6: 237–248.

    Article  Google Scholar 

  23. McCombe PA, Greer JM, Mackay IR . Sexual dimorphism in autoimmune disease. Curr Mol Med 2009; 9: 1058–1079.

    Article  CAS  Google Scholar 

  24. Xu J, Burgoyne PS, Arnold AP . Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet 2002; 11: 1409–1419.

    Article  CAS  Google Scholar 

  25. Reinius B, Shi C, Hengshuo L, Sandhu KS, Radomska KJ, Rosen GD et al. Female-biased expression of long non-coding RNAs in domains that escape X-inactivation in mouse. BMC Genomics 2010; 11: 614.

    Article  Google Scholar 

  26. Segal BM . Th17 cells in autoimmune demyelinating disease. Semin Immunopathol 2010; 32: 71–77.

    Article  CAS  Google Scholar 

  27. Fairfax BP, Knight JC . Genetics of gene expression in immunity to infection. Curr Opin Immunol 2014; 30: 63–71.

    Article  CAS  Google Scholar 

  28. Staeheli P, Grob R, Meier E, Sutcliffe JG, Haller O . Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol Cell Biol 1988; 8: 4518–4523.

    Article  CAS  Google Scholar 

  29. Staeheli P, Sutcliffe JG . Identification of a second interferon-regulated murine Mx gene. Mol Cell Biol 1988; 8: 4524–4528.

    Article  CAS  Google Scholar 

  30. Haller O, Staeheli P, Kochs G . Interferon-induced Mx proteins in antiviral host defense. Biochimie 2007; 89: 812–818.

    Article  CAS  Google Scholar 

  31. Hivroz C, Saitakis M . Biophysical aspects of T lymphocyte activation at the immune synapse. Front Immunol 2016; 7: 46.

    Article  Google Scholar 

  32. Uhlemann R, Gertz K, Boehmerle W, Schwarz T, Nolte C, Freyer D et al. Actin dynamics shape microglia effector functions. Brain Struct Funct 2016; 221: 2717–2734.

    Article  CAS  Google Scholar 

  33. Huang W, Ghisletti S, Saijo K, Gandhi M, Aouadi M, Tesz GJ et al. Coronin 2 A mediates actin-dependent de-repression of inflammatory response genes. Nature 2011; 470: 414–418.

    Article  CAS  Google Scholar 

  34. O'Neill LA, Pearce EJ . Immunometabolism governs dendritic cell and macrophage function. J Exp Med 2016; 213: 15–23.

    Article  CAS  Google Scholar 

  35. Buck MD, O'Sullivan D, Pearce EL . T cell metabolism drives immunity. J Exp Med 2015; 212: 1345–1360.

    Article  CAS  Google Scholar 

  36. Mostafavi S, Ortiz-Lopez A, Bogue MA, Hattori K, Pop C, Koller D et al. Variation and genetic control of gene expression in primary immunocytes across inbred mouse strains. J Immunol 2014; 193: 4485–4496.

    Article  CAS  Google Scholar 

  37. Soh YQ, Alfoldi J, Pyntikova T, Brown LG, Graves T, Minx PJ et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014; 159: 800–813.

    Article  CAS  Google Scholar 

  38. Case LK, Wall EH, Dragon JA, Saligrama N, Krementsov DN, Moussawi M et al. The Y chromosome as a regulatory element shaping immune cell transcriptomes and susceptibility to autoimmune disease. Genome Res 2013; 23: 1474–1485.

    Article  CAS  Google Scholar 

  39. Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 2006; 16: 995–1004.

    Article  CAS  Google Scholar 

  40. Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011; 476: 214–219.

    Article  CAS  Google Scholar 

  41. International Multiple Sclerosis Genetics C, Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med 2007; 357: 851–862.

    Article  Google Scholar 

  42. Bellott DW, Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Cho TJ et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014; 508: 494–499.

    Article  CAS  Google Scholar 

  43. Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature 2016; 534: 500–505.

    Article  CAS  Google Scholar 

  44. Raj T, Rothamel K, Mostafavi S, Ye C, Lee MN, Replogle JM et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 2014; 344: 519–523.

    Article  CAS  Google Scholar 

  45. Naranbhai V, Fairfax BP, Makino S, Humburg P, Wong D, Ng E et al. Genomic modulators of gene expression in human neutrophils. Nat Commun 2015; 6: 7545.

    Article  Google Scholar 

  46. Andiappan AK, Melchiotti R, Poh TY, Nah M, Puan KJ, Vigano E et al. Genome-wide analysis of the genetic regulation of gene expression in human neutrophils. Nat Commun 2015; 6: 7971.

    Article  CAS  Google Scholar 

  47. Dimas AS, Deutsch S, Stranger BE, Montgomery SB, Borel C, Attar-Cohen H et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 2009; 325: 1246–1250.

    Article  CAS  Google Scholar 

  48. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995; 57: 289–300.

    Google Scholar 

  49. Krementsov DN, Case LK, Hickey WF, Teuscher C . Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. FASEB J 2015; 29: 3446–3457.

    Article  CAS  Google Scholar 

  50. Butterfield RJ, Sudweeks JD, Blankenhorn EP, Korngold R, Marini JC, Todd JA et al. New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice. J Immunol 1998; 161: 1860–1867.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health Grants NS069628 and NS076200, and National Multiple Sclerosis Society (NMSS) Grants RG 5170A6/1 and Pilot Project Grant PP2123 (to CT); NMSS Grant RG-1501-03107 (to EPB); postdoctoral fellowship FG1911-A-1 from the NMSS and a UVM FISAR award (to DNK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Krementsov.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on Genes and Immunity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bearoff, F., del Rio, R., Case, L. et al. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity. Genes Immun 17, 386–395 (2016). https://doi.org/10.1038/gene.2016.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2016.37

This article is cited by

Search

Quick links