Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-κB decoy polyplexes decrease P-glycoprotein-mediated multidrug resistance in colorectal cancer cells

Abstract

Multidrug resistance (MDR), a major cause for chemotherapy failure, has been linked to upregulation of ATP-dependent membrane efflux systems that limit intracellular accumulation of cytotoxic anticancer agents. P-glycoprotein (P-gp) encoded by the human ABCB1 gene was the first efflux transporter identified to contribute to MDR. ABCB1 gene expression is correlated with constitutive activation of the NF-κB signaling pathway in tumor cells. The objective of this research is to modulate P-gp activity in colon cancer cells using NF-κB decoy oligodeoxynucleotides (ODNs) that are effectively delivered into the nucleus of colorectal cancer cells by self-assembling nonviral nanoparticles comprising the novel poly[N-(2-hydroxypropyl)methacrylamide]-poly(N,N-dimethylaminoethylmethacrylate) diblock copolymer (pHPMA-b-pDMAEMA). Ethidium bromide intercalation and gel retardation assays demonstrated high DNA condensation capacity of pHPMA-b-pDMAEMA. Nanoparticles prepared with and without decoy ODNs did not significantly compromise cellular safety at N/P ratios 4. Transfection efficiency of pHPMA-b-pDMAEMA polyplexes (N/P=4) in Caco-2 cells was comparable to TurboFect transfection standard, resulting in a 98% reduction in P-gp protein levels. As a pharmacodynamic consequence, intracellular accumulation of the P-gp substrate Rhodamine123 significantly increased by almost twofold. In conclusion, NF-κB ODN polyplexes fabricated with pHPMA-b-pDMAEMA polymer effectively reduced P-gp-mediated efflux activity in Caco-2 cells, suggesting successful interference with NF-κB-binding sites in the promoter region of the ABCB1 gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Linn SC, Giaccone G . MDR1/P-glycoprotein expression in colorectal cancer. Eur J Cancer 1995; 31A: 1291–1294.

    Article  CAS  Google Scholar 

  2. Gottesman MM, Fojo T, Bates SE . Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002; 2: 48–58.

    Article  CAS  Google Scholar 

  3. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation. Science 1998; 281: 1305–1308.

    Article  CAS  Google Scholar 

  4. Haddad JJ, Abdel-Karim NE . NF-kappaB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol 2011; 271: 5–14.

    Article  CAS  Google Scholar 

  5. Zhang J, Lu M, Zhou F, Sun H, Hao G, Wu X et al. Key role of nuclear factor-kappaB in the cellular pharmacokinetics of adriamycin in MCF-7/Adr cells: the potential mechanism for synergy with 20(S)-ginsenoside Rh2. Drug Metab Dispos 2012; 40: 1900–1908.

    Article  CAS  Google Scholar 

  6. Escarcega RO, Fuentes-Alexandro S, Garcia-Carrasco M, Gatica A, Zamora A . The transcription factor nuclear factor-kappa B and cancer. Clin Oncol (R Coll Radiol) 2007; 19: 154–161.

    Article  CAS  Google Scholar 

  7. Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A et al. In vivo transfection of cis element "decoy" against nuclear factor-kappaB binding site prevents myocardial infarction. Nat Med 1997; 3: 894–899.

    Article  CAS  Google Scholar 

  8. Agrawal S, Temsamani J, Tang JY . Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA 1991; 88: 7595–7599.

    Article  CAS  Google Scholar 

  9. Akhtar S, Kole R, Juliano RL . Stability of antisense DNA oligodeoxynucleotide analogs in cellular extracts and sera. Life Sci 1991; 49: 1793–1801.

    Article  CAS  Google Scholar 

  10. De Rosa G, Quaglia F, Bochot A, Ungaro F, Fattal E . Long-term release and improved intracellular penetration of oligonucleotide-polyethylenimine complexes entrapped in biodegradable microspheres. Biomacromolecules 2003; 4: 529–536.

    Article  CAS  Google Scholar 

  11. Godbey WT, Wu KK, Mikos AG . Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc Natl Acad Sci USA 1999; 96: 5177–5181.

    Article  CAS  Google Scholar 

  12. Merdan T, Kopecek J, Kissel T . Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 2002; 54: 715–758.

    Article  CAS  Google Scholar 

  13. Oupicky D, Howard KA, Konak C, Dash PR, Ulbrich K, Seymour LW . Steric stabilization of poly-L-Lysine/DNA complexes by the covalent attachment of semitelechelic poly[N-(2-hydroxypropyl)methacrylamide]. Bioconjug Chem 2000; 11: 492–501.

    Article  CAS  Google Scholar 

  14. Palermo EF, Lee DK, Ramamoorthy A, Kuroda K . Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers. J Phys Chem B 2011; 115: 366–375.

    Article  CAS  Google Scholar 

  15. Duvall CL, Convertine AJ, Benoit DS, Hoffman AS, Stayton PS . Intracellular delivery of a proapoptotic peptide via conjugation to a RAFT synthesized endosomolytic polymer. Mol Pharm 2010; 7: 468–476.

    Article  CAS  Google Scholar 

  16. Xing Y, Yang Y, Zhou F, Wang J . Characterization of genome-wide binding of NF-kappaB in TNFalpha-stimulated HeLa cells. Gene 2013; 526: 142–149.

    Article  CAS  Google Scholar 

  17. Nakahara C, Nakamura K, Yamanaka N, Baba E, Wada M, Matsunaga H et al. Cyclosporin-A enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation in human gastric carcinoma cells. Clin Cancer Res 2003; 9: 5409–5416.

    CAS  PubMed  Google Scholar 

  18. Fang Y, Sun H, Zhai J, Zhang Y, Yi S, Hao G et al. Antitumor activity of NF-kB decoy oligodeoxynucleotides in a prostate cancer cell line. Asian Pacific J Cancer Prev 2011; 12: 2721–2726.

    Google Scholar 

  19. Dixit SG, Zingarelli B, Buckley DJ, Buckley AR, Pauletti GM . Nitric oxide mediates increased P-glycoprotein activity in interferon-{gamma}-stimulated human intestinal cells. Am J Physiol Gastrointest Liver Physiol 2005; 288: G533–G540.

    Article  CAS  Google Scholar 

  20. Burke RS, Pun SH . Extracellular barriers to in vivo PEI and PEGylated PEI polyplex-mediated gene delivery to the liver. Bioconjug Chem 2008; 19: 693–704.

    Article  CAS  Google Scholar 

  21. Goyal R, Tripathi SK, Tyagi S, Ram KR, Ansari KM, Kumar P et al. Gellan gum-PEI nanocomposites as efficient gene delivery agents. J Biomed Nanotechnol 2011; 7: 38–39.

    Article  CAS  Google Scholar 

  22. Benns JM, Choi JS, Mahato RI, Park JS, Kim SW . pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconjug Chem 2000; 11: 637–645.

    Article  CAS  Google Scholar 

  23. Rungsardthong U, Ehtezazi T, Bailey L, Armes SP, Garnett MC, Stolnik S . Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules 2003; 4: 683–690.

    Article  CAS  Google Scholar 

  24. Zaghloul EM, Viola JR, Zuber G, Smith CI, Lundin KE . Formulation and delivery of splice-correction antisense oligonucleotides by amino acid modified polyethylenimine. Mol Pharm 2010; 7: 652–663.

    Article  CAS  Google Scholar 

  25. Zeng X, Pan S, Li J, Wang C, Wen Y, Wu H et al. A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector. Nanotechnology 2011; 22: 375102.

    Article  Google Scholar 

  26. Je JY, Cho YS, Kim SK . Characterization of (aminoethyl)chitin/DNA nanoparticle for gene delivery. Biomacromolecules 2006; 7: 3448–3451.

    Article  CAS  Google Scholar 

  27. van de Wetering P, Cherng J-Y, Talsma H, Hennink WE . Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl methacrylate)/plasmid complexes. J Control Release 1997; 49: 59–69.

    Article  CAS  Google Scholar 

  28. Kao CY, Yang SJ, Tao MH, Jeng YM, Yu IS, Lin SW . Incorporation of the factor IX Padua mutation into FIX-Triple improves clotting activity in vitro and in vivo. Thromb Haemost 2013; 110: 244–256.

    Article  CAS  Google Scholar 

  29. Barner-Kowollik C . Handbook of RAFT polymerization, 2008.

  30. De Rosa G, Maiuri MC, Ungaro F, De Stefano D, Quaglia F, La Rotonda MI et al. Enhanced intracellular uptake and inhibition of NF-kappaB activation by decoy oligonucleotide released from PLGA microspheres. J Gene Med 2005; 7: 771–781.

    Article  CAS  Google Scholar 

  31. de Martimprey H, Vauthier C, Malvy C, Couvreur P . Polymer nanocarriers for the delivery of small fragments of nucleic acids: oligonucleotides and siRNA. Eur J Pharm Biopharm 2009; 71: 490–504.

    Article  CAS  Google Scholar 

  32. Lu B, Xu XD, Zhang XZ, Cheng SX, Zhuo RX . Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Biomacromolecules 2008; 9: 2594–2600.

    Article  CAS  Google Scholar 

  33. Sun J, Yeung CA, Co NN, Tsang TY, Yau E, Luo K et al. Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-kappaB in R-HepG2 cell line. PLoS One 2012; 7: e40720.

    Article  CAS  Google Scholar 

  34. Chaudhary PM, Roninson IB . Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66: 85–94.

    Article  CAS  Google Scholar 

  35. Chaudhary PM, Roninson IB . Induction of multidrug resistance in human cells by transient exposure to different chemotherapeutic drugs. J Natl Cancer Inst 1993; 85: 632–639.

    Article  CAS  Google Scholar 

  36. Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW et al. Metformin inhibits P-glycoprotein expression via the NF-kappaB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 2011; 162: 1096–1108.

    Article  CAS  Google Scholar 

  37. Quesada AR, Barbacid MM, Mira E, Aracil M, Marquez G . Chemosensitization and drug accumulation assays as complementary methods for the screening of multidrug resistance reversal agents. Cancer Lett 1996; 99: 109–114.

    Article  CAS  Google Scholar 

  38. Buyens K, Lucas B, Raemdonck K, Braeckmans K, Vercammen J, Hendrix J et al. A fast and sensitive method for measuring the integrity of siRNA-carrier complexes in full human serum. J Control Release 2008; 126: 67–76.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by a predoctoral fellowship from the Egyptian Ministry of Higher Education awarded to Noura H Abd Ellah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G M Pauletti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Ellah, N., Taylor, L., Ayres, N. et al. NF-κB decoy polyplexes decrease P-glycoprotein-mediated multidrug resistance in colorectal cancer cells. Cancer Gene Ther 23, 149–155 (2016). https://doi.org/10.1038/cgt.2016.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2016.17

This article is cited by

Search

Quick links