Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors

Abstract

Glioblastoma multiforme (GBM or World Health Organization (WHO) grade IV) is the most malignant tumor of the brain. Despite conventional combination treatment of surgery, radiotherapy and chemotherapy, the survival of patients with GBM is generally <1 year. It is a great challenge to identify an effective drug that could efficiently inhibit (i) the growth of cancer cells; (ii) angiogenesis; (iii) metastasis; (iv) tumor-associated inflammation; (v) inactivate proliferative signal, (vi) induce specific apoptosis, and yet causes minimal harm to normal cells. Mesenchymal stem cells (MSCS) do possess some unique features (inherent tumor tropism; anti-inflammatory and immunosuppressive properties) that are not commonly found in current anticancer agents. These cells are known to secrete a vast array of proteins including growth factors, cytokines, chemokines and so on that regulate their biology in an autocrine or paracrine manner in accordance to the surrounding microenvironment. This review briefly summarizes the biology of MSCs and discusses their properties and new development for brain cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Wen PY, Kesari S . Malignant gliomas in adults. N Engl J Med 2008; 359: 492–507.

    CAS  PubMed  Google Scholar 

  2. Opel D, Westhoff MA, Bender A, Braun V, Debatin KM, Fulda S . Phosphatidylinositol 3-kinase inhibition broadly sensitizes glioblastoma cells to death receptor- and drug-induced apoptosis. Cancer Res 2008; 68: 6271–6280.

    CAS  PubMed  Google Scholar 

  3. Ahluwalia MS . 2010 Society for Neuro-Oncology Annual Meeting: a report of selected studies. Expert Rev Anticancer Ther 2011; 11: 161–163.

    PubMed  Google Scholar 

  4. Wong ET, Hess KR, Gleason MJ, Jaeckle KA, Kyritsis AP, Prados MD et al. Outcomes and prognostic factors in recurrent glioma patients enrolled onto phase II clinical trials. J Clin Oncol 1999; 17: 2572–2578.

    CAS  PubMed  Google Scholar 

  5. Holland EC . Glioblastoma multiforme: the terminator. Proc Natl Acad Sci USA 2000; 97: 6242–6244.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Silbergeld DL, Chicoine MR . Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg 1997; 86: 525–531.

    CAS  PubMed  Google Scholar 

  7. Berens ME, Giese A . "...those left behind." Biology and oncology of invasive glioma cells. Neoplasia 1999; 1: 208–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 2006; 13: 1238–1241.

    CAS  PubMed  Google Scholar 

  9. Vescovi AL, Galli R, Reynolds BA . Brain tumour stem cells. Nat Rev Cancer 2006; 6: 425–436.

    CAS  PubMed  Google Scholar 

  10. Gilbert CA, Ross AH . Cancer stem cells: cell culture, markers, and targets for new therapies. J Cell Biochem 2009; 108: 1031–1038.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Friedenstein AJ, Chailakhjan RK, Lalykina KS . The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3: 393–403.

    CAS  PubMed  Google Scholar 

  12. Paul G, Ozen I, Christophersen NS, Reinbothe T, Bengzon J, Visse E et al. The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS ONE 2012; 7: e35577.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fraser JK, Wulur I, Alfonso Z, Hedrick MH . Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24: 150–154.

    CAS  PubMed  Google Scholar 

  14. Griffiths MJ, Bonnet D, Janes SM . Stem cells of the alveolar epithelium. Lancet 2005; 366: 249–260.

    PubMed  Google Scholar 

  15. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003; 114: 763–776.

    CAS  PubMed  Google Scholar 

  16. Qiao C, Xu W, Zhu W, Hu J, Qian H, Yin Q et al. Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol Int 2008; 32: 8–15.

    CAS  PubMed  Google Scholar 

  17. O'Donoghue K, Chan J . Human fetal mesenchymal stem cells. Curr Stem Cell Res Ther 2006; 1: 371–386.

    CAS  PubMed  Google Scholar 

  18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.

    CAS  PubMed  Google Scholar 

  19. Sotiropoulou PA, Perez SA, Salagianni M, Baxevanis CN, Papamichail M . Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells. Stem Cells 2006; 24: 462–471.

    PubMed  Google Scholar 

  20. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C et al. Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 2010; 56: 721–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Jorgensen LH, Blain A, Greally E, Laval SH, Blamire AM, Davison BJ et al. Long-term blocking of calcium channels in mdx mice results in differential effects on heart and skeletal muscle. Am J Pathol 2011; 178: 273–283.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Trachtenberg B, Velazquez DL, Williams AR, McNiece I, Fishman J, Nguyen K et al. Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J 2011; 161: 487–493.

    CAS  PubMed  Google Scholar 

  23. Bhanot Y, Rao S, Ghosh D, Balaraju S, Radhika CR, Satish Kumar KV . Autologous mesenchymal stem cells in chronic spinal cord injury. Br J Neurosurg 2011; 25: 516–522.

    PubMed  Google Scholar 

  24. Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK et al. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery 2012; 70: 1238–1247.

    PubMed  Google Scholar 

  25. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99: 8932–8937.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Le Blanc K, Ringden O . Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2005; 11: 321–334.

    CAS  PubMed  Google Scholar 

  27. Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A et al. Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res 2010; 155: 62–70.

    CAS  PubMed  Google Scholar 

  28. Barry FP, Murphy JM, English K, Mahon BP . Immunogenicity of adult mesenchymal stem cells: lessons from the fetal allograft. Stem Cells Dev 2005; 14: 252–265.

    CAS  PubMed  Google Scholar 

  29. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 2008; 371: 1579–1586.

    CAS  PubMed  Google Scholar 

  30. Ciccocioppo R, Bernardo ME, Sgarella A, Maccario R, Avanzini MA, Ubezio C et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn's disease. Gut 2011; 60: 788–798.

    PubMed  Google Scholar 

  31. Duijvestein M, Vos AC, Roelofs H, Wildenberg ME, Wendrich BB, Verspaget HW et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study. Gut 2010; 59: 1662–1669.

    PubMed  Google Scholar 

  32. Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci U S A 2009; 106: 4822–4827.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sonabend AM, Ulasov IV, Tyler MA, Rivera AA, Mathis JM, Lesniak MS . Mesenchymal stem cells effectively deliver an oncolytic adenovirus to intracranial glioma. Stem Cells 2008; 26: 831–841.

    CAS  PubMed  Google Scholar 

  34. Dwyer RM, Ryan J, Havelin RJ, Morris JC, Miller BW, Liu Z et al. Mesenchymal stem cell-mediated delivery of the sodium iodide symporter supports radionuclide imaging and treatment of breast cancer. Stem Cells 2011; 29: 1149–1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanehira M, Xin H, Hoshino K, Maemondo M, Mizuguchi H, Hayakawa T et al. Targeted delivery of NK4 to multiple lung tumors by bone marrow-derived mesenchymal stem cells. Cancer Gene Ther 2007; 14: 894–903.

    Article  CAS  PubMed  Google Scholar 

  36. Li GC, Ye QH, Xue YH, Sun HJ, Zhou HJ, Ren N et al. Human mesenchymal stem cells inhibit metastasis of a hepatocellular carcinoma model using the MHCC97-H cell line. Cancer Sci 2010; 101: 2546–2553.

    CAS  PubMed  Google Scholar 

  37. van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y, Tilles AW et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 2008; 47: 1634–1643.

    CAS  PubMed  Google Scholar 

  38. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y et al. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 2010; 127: 2323–2333.

    CAS  PubMed  Google Scholar 

  39. Zischek C, Niess H, Ischenko I, Conrad C, Huss R, Jauch KW et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009; 250: 747–753.

    PubMed  Google Scholar 

  40. Bao Q, Zhao Y, Niess H, Conrad C, Schwarz B, Jauch KW et al. Mesenchymal stem cell-based tumor-targeted gene therapy in gastrointestinal cancer. Stem Cells Dev 2012; 21: 2355–2363.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Serakinci N, Christensen R, Fahrioglu U, Sorensen FB, Dagnaes-Hansen F, Hajek M et al. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother Radiopharm 2011; 26: 767–773.

    CAS  PubMed  Google Scholar 

  42. Studeny M, Marini FC, Champlin RE, Zompetta C, Fidler IJ, Andreeff M . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62: 3603–3608.

    CAS  PubMed  Google Scholar 

  43. Khakoo AY, Pati S, Anderson SA, Reid W, Elshal MF, Rovira II et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 2006; 203: 1235–1247.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ho IA, Chan KY, Ng WH, Guo CM, Hui KM, Cheang P et al. Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 2009; 27: 1366–1375.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Newman JP, Toh XY, Chan JKY, Endaya BB, Lam PY . Migration of human fetal bone marrow-derived mesenchymal stem cells: possible involvement of GPCR and MMPs. J Stem Cell Res Ther 2011 (special issue S2).

  46. Smadja DM, Bieche I, Uzan G, Bompais H, Muller L, Boisson-Vidal C et al. PAR-1 activation on human late endothelial progenitor cells enhances angiogenesis in vitro with upregulation of the SDF-1/CXCR4 system. Arterioscler Thromb Vasc Biol 2005; 25: 2321–2327.

    CAS  PubMed  Google Scholar 

  47. Ryu CH, Park SH, Park SA, Kim SM, Lim JY, Jeong CH et al. Gene therapy of intracranial glioma using interleukin 12-secreting human umbilical cord blood-derived mesenchymal stem cells. Hum Gene Ther 2011; 22: 733–743.

    CAS  PubMed  Google Scholar 

  48. Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005; 65: 3307–3318.

    CAS  PubMed  Google Scholar 

  49. Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS . Human bone marrow-derived mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. Stem Cells 2009; 27: 2320–2330.

    CAS  PubMed  Google Scholar 

  50. Yulyana Y, Endaya BB, Ng WH, Guo CM, Hui KM, Lam PY et al. Carbenoxolone enhances TRAIL-induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma. Stem Cells Dev 2013; 22: 1870–1882.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinez-Quintanilla J, Bhere D, Heidari P, He D, Mahmood U, Shah K . In vivo imaging of the therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells 2013; 31: 1706–1714.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Matuskova M, Hlubinova K, Pastorakova A, Hunakova L, Altanerova V, Altaner C et al. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 2010; 290: 58–67.

    CAS  PubMed  Google Scholar 

  53. Yin J, Kim JK, Moon JH, Beck S, Piao D, Jin X et al. hMSC-mediated concurrent delivery of endostatin and carboxylesterase to mouse xenografts suppresses glioma initiation and recurrence. Mol Ther 2011; 19: 1161–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Roger M, Clavreul A, Huynh NT, Passirani C, Schiller P, Vessieres A et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int J Pharm 2012; 423: 63–68.

    CAS  PubMed  Google Scholar 

  55. Aboody KS, Najbauer J, Metz MZ, D'Apuzzo M, Gutova M, Annala AJ et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies. Sci Transl Med 2013; 5: 184ra59.

    PubMed  Google Scholar 

  56. Shen H . Stricter standards sought to curb stem-cell confusion. Nature 2013; 499: 389.

    CAS  PubMed  Google Scholar 

  57. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    CAS  PubMed  Google Scholar 

  58. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD . Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 2008; 269: 67–77.

    CAS  PubMed  Google Scholar 

  59. Akimoto K, Kimura K, Nagano M, Takano S, To'a Salazar G, Yamashita T et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 2013; 22: 1370–1386.

    CAS  PubMed  Google Scholar 

  60. Ertas G, Ural E, Ural D, Aksoy A, Kozdag G, Gacar G et al. Comparative analysis of apoptotic resistance of mesenchymal stem cells isolated from human bone marrow and adipose tissue. ScientificWorldJournal 2012; 2012: 105698.

    PubMed  PubMed Central  Google Scholar 

  61. Yu JM, Jun ES, Bae YC, Jung JS . Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev 2008; 17: 463–473.

    CAS  PubMed  Google Scholar 

  62. Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 2013; 31: 146–155.

    CAS  PubMed  Google Scholar 

  63. Pendleton C, Li Q, Chesler DA, Yuan K, Guerrero-Cazares H, Quinones-Hinojosa A . Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas. PLoS ONE 2013; 8: e58198.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Pevsner-Fischer M, Levin S, Zipori D . The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 2011; 7: 560–568.

    CAS  Google Scholar 

  65. Waterman RS, Henkle SL, Betancourt AM . Mesenchymal stem cell 1 (MSC1)-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis. PLoS ONE 2011; 7: e45590.

    Google Scholar 

  66. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A et al. The stem cell secretome and its role in brain repair. Biochimie 2013 (in press).

  67. Patel SA, Sherman L, Munoz J, Rameshwar P . Immunological properties of mesenchymal stem cells and clinical implications. Arch Immunol Ther Exp 2008; 56: 1–8.

    CAS  Google Scholar 

  68. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C et al. Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 2009; 23: 925–933.

    CAS  PubMed  Google Scholar 

  69. Guo KT 62nd Annual Meeting of the Society of Neurosurgery (DGNC). 2011.

  70. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 2011; 68: 2667–2688.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Roccaro AM, Sacco A, Maiso P, Azab AK, Tai YT, Reagan M et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest 2013; 123: 1542–1555.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ragni E, Montemurro T, Montelatici E, Lavazza C, Vigano M, Rebulla P et al. Differential microRNA signature of human mesenchymal stem cells from different sources reveals an "environmental-niche memory" for bone marrow stem cells. Exp Cell Res 2013; 319: 1562–1574.

    CAS  PubMed  Google Scholar 

  73. Galipeau J . Concerns arising from MSC retrieval from cryostorage and effect on immune suppressive function and phramaceutical usage in clinical trials. Int Soc Blood Transfusion 2013; 8: 100–101.

    Google Scholar 

  74. Yalvac ME, Ramazanoglu M, Tekguc M, Bayrak OF, Shafigullina AK, Salafutdinov II et al. Human tooth germ stem cells preserve neuro-protective effects after long-term cryo-preservation. Curr Neurovasc Res 2010; 7: 49–58.

    CAS  PubMed  Google Scholar 

  75. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008; 10: 619–624.

    CAS  PubMed  Google Scholar 

  76. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005; 11: 367–368.

    CAS  PubMed  Google Scholar 

  77. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9: 1195–1201.

    CAS  PubMed  Google Scholar 

  78. Noiseux N, Gnecchi M, Lopez-Ilasaca M, Zhang L, Solomon SD, Deb A et al. Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006; 14: 840–850.

    CAS  PubMed  Google Scholar 

  79. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA et al. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 2011; 6: 206–214.

    PubMed  Google Scholar 

  80. Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2008; 2: 284–291.

    CAS  PubMed  Google Scholar 

  81. Duffield JS, Bonventre JV . Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 2005; 68: 1956–1961.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C . Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 2005; 289: F31–F42.

    PubMed  Google Scholar 

  83. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther 2013; 4: 34.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 2013; 22: 845–854.

    CAS  PubMed  Google Scholar 

  85. Bi B, Schmitt R, Israilova M, Nishio H, Cantley LG . Stromal cells protect against acute tubular injury via an endocrine effect. J Am Soc Nephrol 2007; 18: 2486–2496.

    PubMed  Google Scholar 

  86. Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS et al. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 2007; 25: 1761–1768.

    CAS  PubMed  Google Scholar 

  87. Watson SL, Marcal H, Sarris M, Di Girolamo N, Coroneo MT, Wakefield D . The effect of mesenchymal stem cell conditioned media on corneal stromal fibroblast wound healing activities. Br J Ophthalmol 2010; 94: 1067–1073.

    CAS  PubMed  Google Scholar 

  88. Parekkadan B, van Poll D, Suganuma K, Carter EA, Berthiaume F, Tilles AW et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS ONE 2007; 2: e941.

    PubMed  PubMed Central  Google Scholar 

  89. Tian LL, Yue W, Zhu F, Li S, Li W . Human mesenchymal stem cells play a dual role on tumor cell growth in vitro and in vivo. J Cell Physiol 2011; 226: 1860–1867.

    PubMed  Google Scholar 

  90. Gauthaman K, Yee FC, Cheyyatraivendran S, Biswas A, Choolani M, Bongso A . Human umbilical cord Wharton's jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. J Cell Biochem 2012; 113: 2027–2039.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PL is funded by the Singapore Ministry of Health’s National Medical Research Council (NMRC/1201/2009) and the Singapore Stem Cell Consortium (SSCC/08/013). JC received salary support from the National Medical Research Council, Singapore (NMRC/CSA/043/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Y P Lam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, J., Lam, P. Human mesenchymal stem cells and their paracrine factors for the treatment of brain tumors. Cancer Gene Ther 20, 539–543 (2013). https://doi.org/10.1038/cgt.2013.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.59

Keywords

This article is cited by

Search

Quick links