Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antitumor potential of SLPI promoter controlled recombinant caspase-3 expression in laryngeal carcinoma

Abstract

The purpose of this study is to develop a specific and efficient targeted gene therapy candidate approach for laryngeal carcinomas. Several promoters of human squamous cell carcinoma antigen 2(SCCA2), secretory leukocyte protease inhibitor (SLPI) and Survivin genes were cloned from human genomic DNA and evaluated for tumor-specific transcription potential in human laryngeal carcinoma Hep-2 cells by dual luciferase assays. One SLPI promoter fragment (677 bp) showed the highest efficiency and specificity, and was used to control the expression of a recombinant active caspases-3 (revCasp3), which could trigger apoptosis without activation of its upstream cascade elements once expressed in a cell, in an adenoviral vector (Ad-SLPI-revCasp3), and its antitumor efficacy was assessed. In vitro infection with Ad-SLPI-revCasp3 showed revCasp3 could be specifically expressed in Hep-2 cells, resulting in efficient activation of endogenous Caspase-3 and subsequent apoptosis of Hep-2 cells. In Hep-2 nude mice xenograft model, intratumoral administration of Ad-SLPI-revCasp3 significantly inhibited tumor growth without obvious loss of body weight and obvious hepatic toxicity. In summary, our study showed the specific and efficient apoptosis-inducing potential of Ad-SLPI-revCasp3, and this makes it a new candidate approach of targeted gene therapy for laryngeal squamous cell carcinoma, which needs further systematic investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Surveillance, epidemiology and end results program web site. Available at URL: http://seer.cancer.gov/statfacts/html/laryn.html; accessed May 1st, 2011.

  2. Nakano H, Kishida T, Asada H, Shin-Ya M, Shinomiya T, Imanishi J et al. Interleukin-21 triggers both cellular and humoral immune responses leading to therapeutic antitumor effects against head and neck squamous cell carcinoma. J Gene Med 2006; 8: 90–99.

    Article  CAS  PubMed  Google Scholar 

  3. Saukkonen K, Hemminki A . Tissue-specific promoters for cancer gene therapy. Expert Opin Biol Ther 2004; 4: 683–696.

    Article  CAS  PubMed  Google Scholar 

  4. Barker SD, Coolidge CJ, Kanerva A, Hakkarainen T, Yamamoto M, Liu B et al. The secretory leukoprotease inhibitor (SLPI) promoter for ovarian cancer gene therapy. J Gene Med 2003; 5: 300–310.

    Article  CAS  PubMed  Google Scholar 

  5. Oshikiri T, Miyamoto M, Hiraoka K, Shichinohe T, Kawarada Y, Kato K et al. Transcriptional targeting of adenovirus vectors with the squamous cell carcinoma-specific antigen-2 promoter for selective apoptosis induction in lung cancer. Cancer Gene Ther 2006; 13: 856–886.

    Article  CAS  PubMed  Google Scholar 

  6. Murakami A, Suminami Y, Sakaguchi Y, Nawata S, Numa F, Kishi F et al. Specific detection and quantitation of SCC antigen 1 and SCC antigen 2 mRNAs by fluorescence-based asymmetric semi-nested reverse transcription PCR. Tumour Biol 2000; 21: 224–234.

    Article  CAS  PubMed  Google Scholar 

  7. Abe T, Tominaga Y, Kikuchi T, Watanabe A, Satoh K, Watanabe Y et al. Bacterial pneumonia causes augmented expression of the secretory leukoprotease inhibitor gene in the murine lung. Am J Respir Crit Care Med 1997; 156: 1235–1240.

    Article  CAS  PubMed  Google Scholar 

  8. Dasgupta S, Tripathi PK, Qin H, Bhattacharya-Chatterjee M, Valentino J, Chatterjee SK . Identification of molecular targets for immunotherapy of patients with head and neck squamous cell carcinoma. Oral Oncol 2006; 42: 306–316.

    Article  CAS  PubMed  Google Scholar 

  9. Srinivasula SM, Ahmad M, MacFarlane M, Luo Z, Huang Z, Fernandes-Alnemri T . Generation of constitutively active recombinant caspases-3 and -6 by rearrangement of their subunits. J Biol Chem 1998; 273: 10107–10111.

    Article  CAS  PubMed  Google Scholar 

  10. Cam L, Boucquey A, Coulomb-L’hermine A, Weber A, Horellou P . Gene transfer of constitutively active caspase-3 induces apoptosis in a human hepatoma cell line. J Gene Med 2005; 7: 30–38.

    Article  CAS  PubMed  Google Scholar 

  11. Kikuchi T, Abe T, Satoh K, Narumi K, Sakai T, Abe S et al. Cis-acting region associated with lung cell-specific expression of the secretory leukoprotease inhibitor gene. Am J Respir Cell Mol Biol 1997; 17: 361–367.

    Article  CAS  PubMed  Google Scholar 

  12. Li F, Altieri DC . Transcriptional analysis of human survivin gene expression. Biochem J 1999; 2: 305–311.

    Google Scholar 

  13. Jonsson N, Gullberg M, Israelsson S, Lindberg AM . A rapid and efficient method for studies of virus interaction at the host cell surface using enteroviruses and real-time PCR. Virol J 2009; 6: 217.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Glasgow JN, Everts M, Curiel DT . Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther 2006; 13: 830–844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Willhauck MJ, Sharif Samani BR, Klutz K, Cengic N, Wolf I, Mohr L et al. Alpha-fetoprotein promoter-targeted sodium iodide symporter gene therapy of hepatocellular carcinoma. Gene Ther 2007; 15: 214–223.

    Article  PubMed  Google Scholar 

  16. Rein DT, Breidenbach M, Curiel DT . Current developments in adenovirus-based cancer gene therapy. Future Oncol 2006; 2: 137–143.

    Article  CAS  PubMed  Google Scholar 

  17. Wang Z, Sun Y . Targeting p53 for novel anticancer therapy. Transl Oncol 2010; 3: 1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oh YK, Park TG . siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009; 61: 850–862.

    Article  CAS  PubMed  Google Scholar 

  19. Mossoba ME, Medin JA . Cancer immunotherapy using virally transduced dendritic cells: animal studies and human clinical trials. Expert Rev Vaccines 2006; 5: 717–732.

    Article  CAS  PubMed  Google Scholar 

  20. Portsmouth D, Hlavaty J, Renner M . Suicide genes for cancer therapy. Mol Aspects Med 2007; 28: 4–41.

    Article  CAS  PubMed  Google Scholar 

  21. Peng Z . Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016–1027.

    Article  CAS  PubMed  Google Scholar 

  22. Xian J, Lin Y, Liu Y, Gong P, Liu S . Combined p14ARF and antisense EGFR potentiate the efficacy of adenovirus-mediated gene therapy in laryngeal squamous cell carcinoma (LSCC). DNA Cell Biol 2007; 26: 71–79.

    Article  CAS  PubMed  Google Scholar 

  23. Hamstra DA, Rice DJ, Fahmy S, Ross BD, Rehemtulla A . Enzyme/prodrug therapy for head and neck cancer using a catalytically superior cytosine deaminase. Hum Gene Ther 1999; 10: 1993–2003.

    Article  CAS  PubMed  Google Scholar 

  24. Heilbronn R, Weger S . Viral vectors for gene transfer: current status of gene therapeutics. Handb Exp Pharmacol 2010; 197: 143–170.

    Article  CAS  Google Scholar 

  25. Caldas H, Jaynes FO, Boyer MW, Hammond S, Altura RA . Survivin and Granzyme B-induced apoptosis, a novel anticancer therapy. Mol Cancer Ther 2006; 5: 693–703.

    Article  CAS  PubMed  Google Scholar 

  26. Lorenzo HK, Susin SA . Therapeutic potential of AIF-mediated caspase-independent programmed cell death. Drug Resist Updat 2007; 10: 235–255.

    Article  CAS  PubMed  Google Scholar 

  27. Gross A . BID as a double agent in cell life and death. Cell Cycle 2006; 5: 582–584.

    Article  CAS  PubMed  Google Scholar 

  28. Weiwei M, Zhenhua X, Feng L, Hang N, Yuyang J . A significant increase of RNAi efficiency in human cells by the CMV enhancer with a tRNAlys promoter. J Biomed Biotechnol 2009; 2009: 514287.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Curiel DT . The development of conditionally replicative adenoviruses for cancer therapy. Clin Cancer Res 2000; 6: 3395–3399.

    CAS  PubMed  Google Scholar 

  30. Jiang H, Gomez-Manzano C, Lang FF, Alemany R, Fueyo J . Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther 2009; 9: 422–427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang ZR, Wang HF, Zhao J, Peng YY, Wang J, Guinn BA . Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 2007; 14: 599–615.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the Department of Public Health of Zhejiang Province of China (No. 2008A089, No. 2009A102 and No. 2007A086), Department of Science and Technology of Zhejiang Province (No. 2008F1029) and Department of Education of Zhejiang Province (Y200804137). We thank Ms Yuelan Chen for her technical assistance in the work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Jia or J Cao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Yang, B., Zhang, S. et al. Antitumor potential of SLPI promoter controlled recombinant caspase-3 expression in laryngeal carcinoma. Cancer Gene Ther 19, 328–335 (2012). https://doi.org/10.1038/cgt.2012.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.5

Keywords

This article is cited by

Search

Quick links