Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Treatment of patient tumor-derived colon cancer xenografts by a TRAIL gene-armed oncolytic adenovirus

Abstract

Oncolytic virus-armed gene therapy may offer new treatment options and improve the prognosis for patients with colon cancer. In this study, we sought to further confirm the antitumor activity of oncolytic virus-armed tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy in xenografts, which derived from the tumors of patients with colon cancer. To this end, we established xenotransplantable tumors from fresh surgical specimens. The histology of these xenografts maintained the features of the original tumors during passaging in nude mice. We next treated these xenografts with adenoviruses carrying TRAIL and the adenovirus E1A gene (Ad/TRAIL-E1) driven by the human telomerase reverse transcriptase promoter. The vector expressing the TRAIL gene (Ad/gTRAIL) or the E1A gene (Ad/GFP-E1) alone was used as control vector. The results demonstrated that Ad/TRAIL-E1 had more significant inhibitory effects on tumor growth than Ad/gTRAIL or Ad/GFP-E1 alone. Furthermore, we did not find any obvious treatment-related toxicity in the mice. Our results indicate that the use of an oncolytic adenoviral vector, in combination with TRAIL gene therapy, is a promising novel approach for cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  2. Wolpin BM, Meyerhardt JA, Mamon HJ, Mayer RJ . Adjuvant treatment of colorectal cancer. CA Cancer J Clin 2007; 57: 168–185.

    Article  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T et al. Cancer statistics, 2008. CA Cancer J Clin 2008; 58: 71–96.

    Article  PubMed  Google Scholar 

  4. Wiley SR, Schooley K, Smolak PJ, Din WS, Huang CP, Nicholl JK et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3: 673–682.

    Article  CAS  PubMed  Google Scholar 

  5. Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A . Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 1996; 271: 12687–12690.

    Article  CAS  PubMed  Google Scholar 

  6. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 1999; 5: 157–163.

    Article  CAS  PubMed  Google Scholar 

  8. French LE, Tschopp J . The TRAIL to selective tumor death. Nat Med 1999; 5: 146–147.

    Article  CAS  PubMed  Google Scholar 

  9. Gliniak B, Le T . Tumor necrosis factor-related apoptosis-inducing ligand's antitumor activity in vivo is enhanced by the chemotherapeutic agent CPT-11. Cancer Res 1999; 59: 6153–6158.

    CAS  PubMed  Google Scholar 

  10. Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL et al. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 2000; 97: 1754–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LeBlanc H, Lawrence D, Varfolomeev E, Totpal K, Morlan J, Schow P et al. Tumor-cell resistance to death receptor—induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 2002; 8: 274–281.

    Article  CAS  PubMed  Google Scholar 

  12. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH . ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  13. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  14. Garber K . China approves world's first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst 2006; 98: 298–300.

    Article  PubMed  Google Scholar 

  15. van Beusechem VW, van den Doel PB, Grill J, Pinedo HM, Gerritsen WR . Conditionally replicative adenovirus expressing p53 exhibits enhanced oncolytic potency. Cancer Res 2002; 62: 6165–6171.

    CAS  PubMed  Google Scholar 

  16. Wadler S, Yu B, Tan JY, Kaleya R, Rozenblit A, Makower D et al. Persistent replication of the modified chimeric adenovirus ONYX-015 in both tumor and stromal cells from a patient with gall bladder carcinoma implants. Clin Cancer Res 2003; 9: 33–43.

    CAS  PubMed  Google Scholar 

  17. Hann B, Balmain A . Replication of an E1B 55-kilodalton protein-deficient adenovirus (ONYX-015) is restored by gain-of-function rather than loss-of-function p53 p53 mutants. J Virol 2003; 77: 11588–11595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong F, Wang L, Davis JJ, Hu W, Zhang L, Guo W et al. Eliminating established tumor in nu/nu nude mice by a tumor necrosis factor-alpha-related apoptosis-inducing ligand-armed oncolytic adenovirus. Clin Cancer Res 2006; 12: 5224–5230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis JJ, Wang L, Dong F, Zhang L, Guo W, Teraishi F et al. Oncolysis and suppression of tumor growth by a GFP-expressing oncolytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther 2006; 13: 720–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin T, Gu J, Zhang L, Huang X, Stephens LC, Curley SA et al. Targeted expression of green fluorescent protein/tumor necrosis factor-related apoptosis-inducing ligand fusion protein from human telomerase reverse transcriptase promoter elicits antitumor activity without toxic effects on primary human hepatocytes. Cancer Res 2002; 62: 3620–3625.

    CAS  PubMed  Google Scholar 

  21. Jacob D, Davis J, Zhu H, Zhang L, Teraishi F, Wu S et al. Suppressing orthotopic pancreatic tumor growth with a fiber-modified adenovector expressing the TRAIL gene from the human telomerase reverse transcriptase promoter. Clin Cancer Res 2004; 10: 3535–3541.

    Article  CAS  PubMed  Google Scholar 

  22. Gu J, Kagawa S, Takakura M, Kyo S, Inoue M, Roth JA et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 2000; 60: 5359–5364.

    CAS  PubMed  Google Scholar 

  23. Fang B, Ji L, Bouvet M, Roth JA . Evaluation of GAL4/TATA in vivo. Induction of transgene expression by adenovirally mediated gene codelivery. J Biol Chem 1998; 273: 4972–4975.

    Article  CAS  PubMed  Google Scholar 

  24. Giovanella BC, Yim SO, Stehlin JS, Williams Jr LJ . Development of invasive tumors in the ‘nude’ mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 1972; 48: 1531–1533.

    CAS  PubMed  Google Scholar 

  25. Bosma GC, Custer RP, Bosma MJ . A severe combined immunodeficiency mutation in the mouse. Nature 1983; 301: 527–530.

    Article  CAS  PubMed  Google Scholar 

  26. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001; 84: 1424–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de CP et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 2007; 13: 3989–3998.

    Article  CAS  PubMed  Google Scholar 

  28. Bhowmick NA, Neilson E, GMoses HL . Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Albini A, Sporn MB . The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 2007; 7: 139–147.

    Article  CAS  PubMed  Google Scholar 

  30. Fichtner I, Slisow W, Gill J, Becker M, Elbe B, Hillebrand T et al. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer 2004; 40: 298–307.

    Article  CAS  PubMed  Google Scholar 

  31. Peterson JK, Houghton PJ . Integrating pharmacology and in vivo cancer models in preclinical and clinical drug development. Eur J Cancer 2004; 40: 837–844.

    Article  CAS  PubMed  Google Scholar 

  32. Fiebig HH, Maier A, Burger AM . Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer 2004; 40: 802–820.

    Article  CAS  PubMed  Google Scholar 

  33. Judde JG, Rebucci M, Vogt N, de Cremoux P, Livartowski A, Chapelier A et al. Gefitinib and chemotherapy combination studies in five novel human non small cell lung cancer xenografts. Evidence linking EGFR signaling to gefitinib antitumor response. Int J Cancer 2007; 120: 1579–1590.

    Article  CAS  PubMed  Google Scholar 

  34. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A et al. Establishment of patient-derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res 2008; 14: 6456–6468.

    Article  CAS  PubMed  Google Scholar 

  35. Mi J, Li ZY, Ni S, Steinwaerder D, Lieber A . Induced apoptosis supports spread of adenovirus vectors in tumors. Hum Gene Ther 2001; 12: 1343–1352.

    Article  CAS  PubMed  Google Scholar 

  36. Solly SK, Trajcevski S, Frisen C, Holzer GW, Nelson E, Clerc B et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther 2003; 10: 30–39.

    Article  CAS  PubMed  Google Scholar 

  37. Pulkkanen KJ, Yla-Herttuala S . Gene therapy for malignant glioma: current clinical status. Mol Ther 2005; 12: 585–598.

    Article  CAS  PubMed  Google Scholar 

  38. Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther 2005; 12: 835–848.

    Article  CAS  PubMed  Google Scholar 

  39. Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE . Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254: 178–216.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shinoura N, Yoshida Y, Asai A, Kirino T, Hamada H . Adenovirus-mediated transfer of p53 and Fas ligand drastically enhances apoptosis in gliomas. Cancer Gene Ther 2000; 7: 732–738.

    Article  CAS  PubMed  Google Scholar 

  41. Shao R, Lee DF, Wen Y, Ding Y, Xia W, Ping B et al. E1A sensitizes cancer cells to TRAIL-induced apoptosis through enhancement of caspase activation. Mol Cancer Res 2005; 3: 219–226.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yongqiang Liao for expert technical assistance in histology. This work was supported in part by grants from the National Natural Science Foundation of China grant 30528030 and 30700970. This article represents a partial fulfillment of the requirements for a Ph.D. degree for Wei Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C He.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, W., Zhu, H., Chen, W. et al. Treatment of patient tumor-derived colon cancer xenografts by a TRAIL gene-armed oncolytic adenovirus. Cancer Gene Ther 18, 336–345 (2011). https://doi.org/10.1038/cgt.2010.83

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.83

Keywords

This article is cited by

Search

Quick links