Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Arming a replicating adenovirus with osteoprotegerin reduces the tumor burden in a murine model of osteolytic bone metastases of breast cancer

An Erratum to this article was published on 15 November 2010

Abstract

Most patients with advanced breast cancer develop osteolytic bone metastases, which have numerous complications. Because current therapies are not curative, new treatments are needed. Conditionally replicating adenoviruses (CRAds) are anticancer agents designed to infect and lyse tumor cells. However, in spite of their promise as selective cancer therapeutics, replicating adenoviruses have shown limited efficacy in the clinical setting. We hypothesized that a CRAd armed with osteoprotegerin (OPG) would eradicate bone metastases of breast cancer both directly, by oncolysis, and indirectly, by inhibiting osteoclastic bone resorption, and thus reducing the tumor burden. We constructed an armed CRAd (Ad5-Δ24-sOPG-Fc-RGD) by replacing viral E3B genes with a fusion of the ligand-binding domains of OPG and the Fc portion of human IgG1. Conditional replication was conferred by a 24-base pair deletion within E1A (Δ24), which prevents the binding of E1A to the retinoblastoma tumor suppressor/cell cycle regulator protein and limits replication in normal cells. Enhanced infection of cells expressing low levels of the primary Ad5 receptor was conferred by incorporating an arginine-glycine-aspartic acid (RGD) peptide sequence into the fiber knob to mediate binding to αv integrins. After characterization of the armed CRAd, we demonstrated that infection of breast cancer cells by Ad5-Δ24-sOPG-Fc-RGD both killed the infected cells by oncolysis and inhibited the formation of osteoclasts in an in vitro co-culture model. In a murine model of osteolytic bone metastases of breast cancer, the CRAd armed with shortened OPG (sOPG)-Fc reduced tumor burden in the bone and inhibited osteoclast formation more effectively than an unarmed CRAd.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Mundy GR . Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2002; 2: 584–593.

    Article  CAS  PubMed  Google Scholar 

  2. Coleman RE . Management of bone metastases. Oncologist 2000; 5: 463–470.

    Article  CAS  PubMed  Google Scholar 

  3. Pavlakis N, Schmidt R, Stockler M . Bisphosphonates for breast cancer. Cochrane Database Syst Rev 2005: CD003474.

  4. Alemany R, Balague C, Curiel DT . Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18: 723–727.

    Article  CAS  PubMed  Google Scholar 

  5. Kirn D . Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther 2001; 8: 89–98.

    Article  CAS  PubMed  Google Scholar 

  6. Hermiston T . Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer. J Clin Invest 2000; 105: 1169–1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guise TA, Mundy GR . Cancer and bone. Endocr Rev 1998; 19: 18–54.

    CAS  PubMed  Google Scholar 

  8. Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 1999; 140: 4451–4458.

    Article  CAS  PubMed  Google Scholar 

  9. Kakonen SM, Mundy GR . Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer 2003; 97: 834–839.

    Article  PubMed  Google Scholar 

  10. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.

    Article  CAS  PubMed  Google Scholar 

  11. Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y et al. Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 2000; 141: 3478–3484.

    Article  CAS  PubMed  Google Scholar 

  12. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ . Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 2001; 61: 4432–4436.

    CAS  PubMed  Google Scholar 

  13. Body JJ, Greipp P, Coleman RE, Facon T, Geurs F, Fermand JP et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer 2003; 97: 887–892.

    Article  PubMed  Google Scholar 

  14. Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ . Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev 1999; 20: 345–357.

    Article  CAS  PubMed  Google Scholar 

  15. Shipman CM, Croucher PI . Osteoprotegerin is a soluble decoy receptor for tumor necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a paracrine survival factor for human myeloma cells. Cancer Res 2003; 63: 912–916.

    CAS  PubMed  Google Scholar 

  16. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Ther 2001; 8: 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  17. Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ, Wold WS . The adenovirus death protein (E3-11.6 K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 1996; 70: 2296–2306.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R . A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 2001; 7: 120–126.

    CAS  PubMed  Google Scholar 

  19. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 2000; 19: 2–12.

    Article  CAS  PubMed  Google Scholar 

  20. Dmitriev I, Krasnykh V, Miller CR, Wang M, Kashentseva E, Mikheeva G et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism. J Virol 1998; 72: 9706–9713.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shayakhmetov DM, Li ZY, Ni S, Lieber A . Targeting of adenovirus vectors to tumor cells does not enable efficient transduction of breast cancer metastases. Cancer Res 2002; 62: 1063–1068.

    CAS  PubMed  Google Scholar 

  22. Anders M, Hansen R, Ding RX, Rauen KA, Bissell MJ, Korn WM . Disruption of 3D tissue integrity facilitates adenovirus infection by deregulating the coxsackievirus and adenovirus receptor. Proc Natl Acad Sci USA 2003; 100: 1943–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harms JF, Welch DR, Samant RS, Shevde LA, Miele ME, Babu GR et al. A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis 2004; 21: 119–128.

    Article  CAS  PubMed  Google Scholar 

  24. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 1996; 98: 1544–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cowey S, Szafran AA, Kappes J, Zinn KR, Siegal GP, Desmond RA et al. Breast cancer metastasis to bone: evaluation of bioluminescent imaging and microSPECT/CT for detecting bone metastasis in immunodeficient mice. Clin Exp Metastasis 2007; 24: 389–401.

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki K, Alemany R, Yamamoto M, Curiel DT . The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clin Cancer Res 2002; 8: 3348–3359.

    CAS  PubMed  Google Scholar 

  27. Emery JG, McDonnell P, Burke MB, Deen KC, Lyn S, Silverman C et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem 1998; 273: 14363–14367.

    Article  CAS  PubMed  Google Scholar 

  28. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 1996; 70: 7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Precious BaR, W C . Growth, purification and titration of adenoviruses. In: Mahy BWJ (ed). Virology: A Practical Approach. IRL: Oxford, 1985, pp. 193–205.

    Google Scholar 

  30. Kirby TO, Rivera A, Rein D, Wang M, Ulasov I, Breidenbach M et al. A novel ex vivo model system for evaluation of conditionally replicative adenoviruses therapeutic efficacy and toxicity. Clin Cancer Res 2004; 10: 8697–8703.

    Article  CAS  PubMed  Google Scholar 

  31. Rivera AA, Wang M, Suzuki K, Uil TG, Krasnykh V, Curiel DT et al. Mode of transgene expression after fusion to early or late viral genes of a conditionally replicating adenovirus via an optimized internal ribosome entry site in vitro and in vivo. Virology 2004; 320: 121–134.

    Article  CAS  PubMed  Google Scholar 

  32. Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, Kodama H et al. The bone marrow-derived stromal cell lines MC3T3-G2/PA6 and ST2 support osteoclast-like cell differentiation in cocultures with mouse spleen cells. Endocrinology 1989; 125: 1805–1813.

    Article  CAS  PubMed  Google Scholar 

  33. Halleen JM, Alatalo SL, Suominen H, Cheng S, Janckila AJ, Vaananen HK . Tartrate-resistant acid phosphatase 5b: a novel serum marker of bone resorption. J Bone Miner Res 2000; 15: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  34. Corey E, Quinn JE, Bladou F, Brown LG, Roudier MP, Brown JM et al. Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 2002; 52: 20–33.

    Article  PubMed  Google Scholar 

  35. Le LP, Le HN, Dmitriev IP, Davydova JG, Gavrikova T, Yamamoto S et al. Dynamic monitoring of oncolytic adenovirus in vivo by genetic capsid labeling. J Natl Cancer Inst 2006; 98: 203–214.

    Article  CAS  PubMed  Google Scholar 

  36. Ono HA, Le LP, Davydova JG, Gavrikova T, Yamamoto M . Noninvasive visualization of adenovirus replication with a fluorescent reporter in the E3 region. Cancer Res 2005; 65: 10154–10158.

    Article  CAS  PubMed  Google Scholar 

  37. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 1987; 2: 595–610.

    Article  CAS  PubMed  Google Scholar 

  38. Rocconi RP, Zhu ZB, Stoff-Khalili M, Rivera AA, Lu B, Wang M et al. Treatment of ovarian cancer with a novel dual targeted conditionally replicative adenovirus (CRAd). Gynecol Oncol 2007; 105: 113–121.

    Article  CAS  PubMed  Google Scholar 

  39. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  40. Cody JJ, Douglas JT . Armed replicating adenoviruses for cancer virotherapy. Cancer Gene Ther 2009; 16: 473–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Paget S . The distribution of secondary growths in cancer of the breast. Lancet 1889; 1: 571–573.

    Article  Google Scholar 

  42. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 2001; 107: 1235–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vanderkerken K, De Leenheer E, Shipman C, Asosingh K, Willems A, Van Camp B et al. Recombinant osteoprotegerin decreases tumor burden and increases survival in a murine model of multiple myeloma. Cancer Res 2003; 63: 287–289.

    CAS  PubMed  Google Scholar 

  44. Tannehill-Gregg SH, Levine AL, Nadella MV, Iguchi H, Rosol TJ . The effect of zoledronic acid and osteoprotegerin on growth of human lung cancer in the tibias of nude mice. Clin Exp Metastasis 2006; 23: 19–31.

    Article  CAS  PubMed  Google Scholar 

  45. Canon JR, Roudier M, Bryant R, Morony S, Stolina M, Kostenuik PJ et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 2008; 25: 119–129.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng Y, Zhou H, Brennan K, Blair JM, Modzelewski JR, Seibel MJ et al. Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone 2007; 40: 471–478.

    Article  CAS  PubMed  Google Scholar 

  47. Miller RE, Roudier M, Jones J, Armstrong A, Canon J, Dougall WC . RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol Cancer Ther 2008; 7: 2160–2169.

    Article  CAS  PubMed  Google Scholar 

  48. Rae JM, Ramus SJ, Waltham M, Armes JE, Campbell IG, Clarke R et al. Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin Exp Metastasis 2004; 21: 543–552.

    Article  CAS  PubMed  Google Scholar 

  49. Sellappan S, Grijalva R, Zhou X, Yang W, Eli MB, Mills GB et al. Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res 2004; 64: 3479–3485.

    Article  CAS  PubMed  Google Scholar 

  50. Harms JF, Welch DR . MDA-MB-435 human breast carcinoma metastasis to bone. Clin Exp Metastasis 2003; 20: 327–334.

    Article  CAS  PubMed  Google Scholar 

  51. van der Pluijm G, Que I, Sijmons B, Buijs JT, Lowik CW, Wetterwald A et al. Interference with the microenvironmental support impairs the de novo formation of bone metastases in vivo. Cancer Res 2005; 65: 7682–7690.

    Article  CAS  PubMed  Google Scholar 

  52. Fisher JL, Schmitt JF, Howard ML, Mackie PS, Choong PF, Risbridger GP . An in vivo model of prostate carcinoma growth and invasion in bone. Cell Tissue Res 2002; 307: 337–345.

    Article  CAS  PubMed  Google Scholar 

  53. Fisher JL, Mackie PS, Howard ML, Zhou H, Choong PF . The expression of the urokinase plasminogen activator system in metastatic murine osteosarcoma: an in vivo mouse model. Clin Cancer Res 2001; 7: 1654–1660.

    CAS  PubMed  Google Scholar 

  54. Krasnykh VN, Douglas JT, van Beusechem VW . Genetic targeting of adenoviral vectors. Mol Ther 2000; 1: 391–405.

    Article  CAS  PubMed  Google Scholar 

  55. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH Grants R01 CA108585, T32 CA075930, P30 AR046031, P50 CA089019, DOD Grants DAMD17-03-1-0256 and W81XWH-04-1-0800, Susan G Komen Breast Cancer Foundation Grant BCTR0100406, and Haley's Hope Memorial Support Fund for Osteosarcoma Research at the University of Alabama at Birmingham, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G P Siegall.

Ethics declarations

Competing interests

JT Douglas holds equity in VectorLogics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cody, J., Rivera, A., Lyons, G. et al. Arming a replicating adenovirus with osteoprotegerin reduces the tumor burden in a murine model of osteolytic bone metastases of breast cancer. Cancer Gene Ther 17, 893–905 (2010). https://doi.org/10.1038/cgt.2010.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.47

Keywords

This article is cited by

Search

Quick links