Physical sciences articles within Nature Physics

Featured

  • Editorial |

    Controversial and out-of-line results should not be discarded or hidden — even though revealing them may come at some recriminatory cost, as the OPERA collaboration has discovered.

  • News & Views |

    Two experiments have measured an all-important number in neutrino physics. Going by the innocuous name of 'θ13', this parameter's value has significant implications for our understanding of the Universe.

    • David Wark
  • Article |

    Small clusters of magnetic atoms can behave in very different ways to those same atoms in bulk. Arranging iron atoms one by one into complex but well-defined patterns on a copper surface enables the construction of nanoscale magnetic structures with tailored characteristics.

    • Alexander Ako Khajetoorians
    • , Jens Wiebe
    •  & Roland Wiesendanger
  • Article |

    In 2000, Asher Peres put forward the paradoxical idea that entanglement could be produced after the entangled particles have been measured, even if they no longer exist. Researchers now experimentally demonstrate this idea using four photons.

    • Xiao-song Ma
    • , Stefan Zotter
    •  & Anton Zeilinger
  • Letter |

    The proximity effect enables the injection of Cooper pairs from a superconductor into a normal metal, but they usually do not travel far into the metal. A study of the propagation of Cooper pairs from irregularly shaped superconducting islands on a metal film finds that they can travel further than expected for certain island geometries.

    • Jungdae Kim
    • , Victor Chua
    •  & Chih-Kang Shih
  • Letter |

    Despite their name, the bulk electrical conductivity of most topological insulators is relatively high, masking many of the important characteristics of its protected, surface conducting states. Counter-doping reduces the bulk conductivity of Bi2Se3 significantly, allowing these surface states and their properties to be clearly identified.

    • Dohun Kim
    • , Sungjae Cho
    •  & Michael S. Fuhrer
  • Letter |

    An interferometric implementation of Young’s double-slit experiment is used to probe quantum correlations that are manifest in the distribution of local spin fluctuations in a two-component degenerate Fermi gas.

    • Jakob Meineke
    • , Jean-Philippe Brantut
    •  & Tilman Esslinger
  • Letter |

    Bose–Einstein condensation is usually considered to be an inherently quantum mechanical phenomenon. An observation of the condensation in a classical system of light waves in a nonlinear crystal demonstrates that it is a general wave-mechanical phenomenon.

    • Can Sun
    • , Shu Jia
    •  & Jason W. Fleischer
  • Editorial |

    In times of fiscal restraint, it is vital that every dollar, pound, yen, yuan and euro be put to good use. Lazy accounting, however, is no way to encourage excellence.

  • Commentary |

    The long-term promises of quantum simulators are far-reaching. The field, however, also needs clearly defined short-term goals.

    • J. Ignacio Cirac
    •  & Peter Zoller
  • News & Views |

    Migrating cells are capable of actively opposing external forces. A study of the polymers that mediate cell motility indicates that they effect this response by branching where bent under force.

    • Anders E. Carlsson
  • Review Article |

    Experimental progress in controlling and manipulating trapped atomic ions has opened the door for a series of proof-of-principle quantum simulations. This article reviews these experiments, together with the methods and tools that have enabled them, and provides an outlook on future directions in the field.

    • R. Blatt
    •  & C. F. Roos
  • Review Article |

    Quantum optics has played an important role in the exploration of foundational issues in quantum mechanics, and in using quantum effects for information processing and communications purposes. Photonic quantum systems now also provide a valuable test bed for quantum simulations. This article surveys the first generation of such experiments, and discusses the prospects for tackling outstanding problems in physics, chemistry and biology.

    • Alán Aspuru-Guzik
    •  & Philip Walther
  • Review Article |

    Experiments with ultracold quantum gases provide a platform for creating many-body systems that can be well controlled and whose parameters can be tuned over a wide range. These properties put these systems in an ideal position for simulating problems that are out of reach for classical computers. This review surveys key advances in this field and discusses the possibilities offered by this approach to quantum simulation.

    • Immanuel Bloch
    • , Jean Dalibard
    •  & Sylvain Nascimbène
  • Progress Article |

    Lithographically fabricated micrometre-scale superconducting circuits exhibit behaviour analogues to natural quantum entities, such as atom, ions and photons. Large-scale arrays of such circuits hold the promise of providing a unique route to quantum simulation. Recent progress in technology and methodology are reviewed here, and prospects and challenges discussed.

    • Andrew A. Houck
    • , Hakan E. Türeci
    •  & Jens Koch
  • Article |

    Spin transfer torque—the transfer of angular momentum from a spin-polarized current to a ferromagnet’s magnetization—has already found commercial application in memory devices, but the underlying physics is still not fully understood. Researchers now demonstrate the crucial role played by the polarization of the laser light that generates the current; a subtle effect only evident when isolated from other influences such as heating.

    • P. Němec
    • , E. Rozkotová
    •  & T. Jungwirth
  • Letter |

    Conventional approaches to optomechanics control and monitor the motion of nanoscale mechanical resonators by coupling it to a high-quality photonic cavity. An all-mechanical implementation is now demonstrated by creating a so-called phonon cavity from different oscillating modes of the resonator. This idea opens a route to using solid-state systems to investigate physics not accessible in their analogous, but better developed, quantum-optics counterpart.

    • I. Mahboob
    • , K. Nishiguchi
    •  & H. Yamaguchi
  • Article |

    A demonstration of the ability to coherently control the collective attosecond dynamics of relativistic electrons driven through a plasma by an intense laser represents an important step in the development of techniques to manipulate and study extreme states of matter.

    • Antonin Borot
    • , Arnaud Malvache
    •  & Rodrigo Lopez-Martens
  • Letter |

    An outstanding question about the iron-based superconductors has been whether or not their magnetic characteristics are dominated by itinerant or localized magnetic moments. Absolute measurements and calculations of the magnetic response of undoped and Ni-doped BaFe2As2 indicate the latter.

    • Mengshu Liu
    • , Leland W. Harriger
    •  & Pengcheng Dai
  • Letter |

    It is well known that graphene deposited on hexagonal boron nitride produces moiré patterns in scanning tunnelling microscopy images. The interaction that produces this pattern also produces a commensurate periodic potential that generates a set of Dirac points that are different from those of the graphene lattice itself.

    • Matthew Yankowitz
    • , Jiamin Xue
    •  & Brian J. LeRoy
  • Article |

    It is well known that organisms profit from adapting to their environment. A study of stochastic adaptation dynamics shows that this comes at the expense of adaptive speed and accuracy—providing a framework for understanding adaptation in noisy biological systems.

    • Ganhui Lan
    • , Pablo Sartori
    •  & Yuhai Tu
  • Article |

    Commutation relations define the limit to which two complementary properties can be simultaneously known—Heisenberg’s uncertainty principle. Yet it is thought that these canonical relations might be different in the quantum gravity regime. Researchers now show how quantum-optics experiments might provide a direct route for studying these effects.

    • Igor Pikovski
    • , Michael R. Vanner
    •  & Časlav Brukner
  • Letter |

    A cross-validation study comparing experimental findings obtained with a system of ultracold fermions with the results of a method based on computing contributions from millions of Feynman diagrams underlines the potential of the so-called bold diagrammatic Monte Carlo technique for solving problems in the area of strongly correlated quantum matter.

    • K. Van Houcke
    • , F. Werner
    •  & M. W. Zwierlein
  • Article |

    The magnetic character of the cuprates is suspected by many to be involved in the emergence of unconventional superconductivity. The discovery of a second distinct magnetic excitation in HgBa2CuO4 supports a multiband picture of the magnetic structure of these materials.

    • Yuan Li
    • , G. Yu
    •  & M. Greven
  • Article |

    Small-world topologies characterize many natural and human-built networks. Yet, how such networks organize their link weights is not fully understood. These authors report an organization scheme that captures important features of real-world systems, and identify learning rules that allow evolving networks to obtain such weight organizations based on their history.

    • Sinisa Pajevic
    •  & Dietmar Plenz
  • News & Views |

    An experimental demonstration that the expansion of ultracold atoms in three dimensions can be frozen by disorder provides fertile ground for studies of metal–insulator transitions in disordered systems — including those with interacting particles.

    • Robin Kaiser
  • Letter |

    The Cooper pairs of conventional superconductors exhibit a nodeless s-wave symmetry, and most unconventional superconductors, including cuprates and heavy-fermion materials, exhibit nodal d-wave pairing. In contrast to both, angle-resolved photoemission spectroscopy measurements indicate that the iron-based superconductor BaFe2(As0.7P0.3)2 exhibits an unusual nodal s-wave pairing.

    • Y. Zhang
    • , Z. R. Ye
    •  & D. L. Feng
  • Research Highlights |

    • Alison Wright
  • Research Highlights |

    • Abigail Klopper
  • News & Views |

    Geomagnetic storms driven by the solar wind can cause the flux of high-energy electrons in the Earth's Van Allen belts to rapidly fall. Analysis of data obtained during one such event from multiple spacecraft located at different altitudes in the magnetosphere reveals just where these electrons go.

    • Mary K. Hudson
  • Editorial |

    Two big-science projects — the Large Hadron Collider and the Planck satellite — are set to deliver major results in the coming year.