Physical sciences articles within Nature Communications

Featured

  • Article
    | Open Access

    Methionine plays an essential role in various biological and cell regulatory processes, making its chemoproteomic profiling necessary to understand its function. Here, the authors present Copper(I)-Nitrene Platform (CuNiP) for robust and selective labelling of methionine to generate highly stable sulfonyl sulfimide conjugates under physiological conditions.

    • Samrat Sahu
    • , Benjamin Emenike
    •  & Monika Raj
  • Article
    | Open Access

    Targeted drug delivery in vivo is a complex challenge, and understanding the characteristics that define the behavior of delivery vehicles in vivo is vital for advancing delivery vehicle design. Here the authors use a library of polymeric delivery vehicles and high-throughput tools to study the structure-function relationships guiding the physiological fate of nanomedicines.

    • Alexandra S. Piotrowski-Daspit
    • , Laura G. Bracaglia
    •  & W. Mark Saltzman
  • Article
    | Open Access

    Here the authors demonstrate a laser system that can directly output soliton microcombs, with high power efficiency and reconfigurability, paving the way for communication, computing, and metrology based on integrated photonics.

    • Jingwei Ling
    • , Zhengdong Gao
    •  & Qiang Lin
  • Article
    | Open Access

    Despite the importance of dynamic phosphorylation in biology, enzyme-free, synthetic systems that use dynamic phosphorylation to regulate supramolecular processes are unexplored. Here, the authors report an enzyme-free chemical reaction cycle that can dynamically phosphorylate amino acids and peptides using simple phosphorylating agents and regulate supramolecular functions.

    • Simone M. Poprawa
    • , Michele Stasi
    •  & Job Boekhoven
  • Article
    | Open Access

    Direct radical C–H amination strategies have exhibited innovation, but challenges remain with C–H amination of electron-poor nitroarenes due to the essence of the electron-deficient nitrogen radical. Herein, the authors report a transition metal-free dehydrogenative C(sp2)-H/N-H cross-coupling between electron-poor nitroarenes and amines.

    • Zhen Zhang
    • , Shusheng Yue
    •  & Hu Cai
  • Article
    | Open Access

    The limited durability of metal-nitrogen-carbon electrocatalysts hinders their use in proton exchange membrane fuel cells for the oxygen reduction reaction. Here the authors transform active sites from FeN4 to stable monosymmetric FeN2 + N’2 via chemical vapor modification, resulting in enhanced improving the durability of the catalyst.

    • Jingsen Bai
    • , Tuo Zhao
    •  & Wei Xing
  • Article
    | Open Access

    Stark spectroscopy of molecules in liquid solutions was once challenging due to orientation effects, solved by freezing but limiting ambient studies. Now, THz Stark spectroscopy with intense terahertz pulses enables dynamic analysis of molecules in both non-polar and polar solvents at any temperature, advancing conventional methods.

    • Bong Joo Kang
    • , Egmont J. Rohwer
    •  & Thomas Feurer
  • Article
    | Open Access

    Currently, precious metal recovery from e-waste water is usually performed by liquid extraction or sorbent processes. Here, the authors show the untapped potential of dielectric insulators as catalysts for the 1-step selective recovery of gold in aqueous solutions by contact-electrocatalysis.

    • Yusen Su
    • , Andy Berbille
    •  & Zhong Lin Wang
  • Article
    | Open Access

    There is significant interest in developing electronic units that can perform sensing, signal processing, and actuation functions independently, similar to biological systems. Lyu et al. develop electronic units based on liquid crystal oligomer networks that exhibit adaptive behavior in response to environmental stimuli such as light and heat.

    • Pengrong Lyu
    • , Dirk J. Broer
    •  & Danqing Liu
  • Article
    | Open Access

    Modelling of acidic zeolites, one of the key industrial catalysts, under realistic operating conditions is currently limited to specific cases. Here, the authors report a machine learning framework allowing for accurate high-throughput modelling.

    • Andreas Erlebach
    • , Martin Šípka
    •  & Lukáš Grajciar
  • Article
    | Open Access

    Universality of critical behaviour of O(N) field theories on regular homogeneous lattices is established, but open questions remain for more complex lattices. Bighin et al. study universality on a non-homogeneous graph showing that its scaling theory is controlled by a single parameter, the spectral dimension.

    • Giacomo Bighin
    • , Tilman Enss
    •  & Nicolò Defenu
  • Article
    | Open Access

    Researchers mimic protein interface helices by stapling peptide side chains, or replacing hydrogen bonds with covalent ones, and synthetic helical mimics are heavily biased towards stapling. Here the authors describe bioinformatic discovery of hydrophobic triangles at helix N-termini, and rigid, bicyclic synthetic mimics of them.

    • Tianxiong Mi
    • , Duyen Nguyen
    •  & Kevin Burgess
  • Article
    | Open Access

    Rhombohedral-stacked (R-stacked) transition metal dichalcogenide bilayers exhibit remarkable properties, but their large-area epitaxial growth remains challenging. Here, the authors report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates.

    • Chao Chang
    • , Xiaowen Zhang
    •  & Xiaozhi Xu
  • Article
    | Open Access

    The principle of Le Chatelier is a fundamental concept in textbooks, serving as a guiding principle for controlling chemical and catalytic systems. In this study, the authors present an oxygen electroreduction system based on a single zinc vacancy catalyst, which operates in a manner that extends “beyond” Le Chatelier’s principle.

    • Qi Huang
    • , Baokai Xia
    •  & Sheng Chen
  • Article
    | Open Access

    Standard ways of characterising quantum states incur exponential overhead. Here, the authors consider the task of reconstructing density matrices of multimode continuous variable systems, and demonstrate a method which scales polynomially with the system size, provided the state lies in a polynomial dimensional subspace.

    • Kevin He
    • , Ming Yuan
    •  & David I. Schuster
  • Article
    | Open Access

    The authors demonstrated an unprecedented level of polarization squeezing of light generated by an atomic ensemble, and a new regime of continuous quantum measurements on a macroscopic material oscillator.

    • Christian Bærentsen
    • , Sergey A. Fedorov
    •  & Eugene S. Polzik
  • Article
    | Open Access

    Performance of triboelectric nanogenerators is limited by electrostatic breakdown. Here, the spontaneously established reverse electric field is introduced to restrict the side-discharge problem caused by electrostatic breakdown, leading to a high Coulombic efficiency and enhanced output power.

    • Yikui Gao
    • , Lixia He
    •  & Jie Wang
  • Article
    | Open Access

    Metals often suffer from reduced strength and ductility after hydrogenation. Here, the authors show hydrogenation can lead to enhancement in strength and ductility accompanied by a large change in magnetic entropy, overcoming the bottlenecks of using amorphous alloys for magnetic refrigerants.

    • Liliang Shao
    • , Qiang Luo
    •  & Weihua Wang
  • Article
    | Open Access

    Infarted myocardium hampers the synchronous electroactivity of the cardiac tissue. Here, the authors showcase a battery-free conductive cardiac patch made of reduced graphene and its therapeutic efficacy for cardiac repair.

    • Renjie Qiu
    • , Xingying Zhang
    •  & Leyu Wang
  • Article
    | Open Access

    Traditional methods to incorporate polycrystalline thin film into flexible systems are often complicated and limited by their sizes. Here, the authors introduce flexible amorphous thin film energy harvester, based on perovskite oxides, on a plastic substrate for electromechanical energy harvesting.

    • Ju Han
    • , Sung Hyun Park
    •  & Yong Soo Cho
  • Article
    | Open Access

    The regeneration of critical-size bone defects, especially those with irregular shapes, remains a clinical challenge. Here, the authors report a shape-memory, tailorable, self-adaptive and bioactive silk fibroin/magnesium composite scaffold that can quickly match irregular defects by simple trimming and lead to good interface integration.

    • Zhinan Mao
    • , Xuewei Bi
    •  & Yufeng Zheng
  • Article
    | Open Access

    Determining the different cell types that contribute to a mixture of DNA is key for research and diagnostic applications. Here, authors comprehensively benchmark DNA methylation-based deconvolution methods, evaluating their performance and robustness to technical bias.

    • Kobe De Ridder
    • , Huiwen Che
    •  & Bernard Thienpont
  • Article
    | Open Access

    The direct C−H-difluoromethylation of pyridines represents a highly efficient economic way to access azines. However, the direct meta-difluoromethylation of pyridines remains elusive. Here, the authors demonstrate switchable meta- as well as para-C−H difluoromethylation of pyridines through radical processes by using oxazino pyridine intermediates.

    • Pengwei Xu
    • , Zhe Wang
    •  & Armido Studer
  • Article
    | Open Access

    Stretchable phosphorescent materials have potential in applications such as wearable electronics, but achieving a suitable balance of emission and stretchability is challenging. Here, the authors report the use of microphase separation to show stretchability with emission lifetimes maintained.

    • Nan Gan
    • , Xin Zou
    •  & Wei Huang
  • Article
    | Open Access

    Many natural products exist as families of structurally similar molecules, and therefore developing skeletal modifications of common intermediates offers flexible and powerful approaches for target synthesis. Here, the authors report a single-atom insertion into the framework of the benzenoid subfamily, providing access to the troponoid congeners.

    • Stefan Wiesler
    • , Goh Sennari
    •  & Richmond Sarpong
  • Article
    | Open Access

    Controlling multiple stereogenic centers in a single molecular scaffold represents a challenge for current switchable asymmetric catalysts. Here, the authors achieve asymmetric stereodivergency by means of a switchable supramolecular helical catalyst allowing all stereoisomers to be obtained with high and similar enantioselectivities.

    • Ran Chen
    • , Ahmad Hammoud
    •  & Matthieu Raynal
  • Article
    | Open Access

    Biosensing tools to detect multiple analytes in a high-throughput manner are still hindered by many limitations. Here, the authors present a label-free optofluidic platform integrating digital holography and microfluidics for analyte detection, allowing for the fingerprinting of heterogenous biological samples.

    • Alexia Stollmann
    • , Jose Garcia-Guirado
    •  & Romain Quidant
  • Article
    | Open Access

    Detecting tipping points and predicting extreme events from data remains a challenging problem in complex systems related to climate, ecology and finance. The authors propose a data-driven approach to estimate probabilities of rare events in complex systems, and detect tipping points/catastrophic shifts.

    • Gianluca Fabiani
    • , Nikolaos Evangelou
    •  & Ioannis G. Kevrekidis
  • Article
    | Open Access

    Probabilistic bits (p-bits) are the base units of probabilistic computing, a computing scheme offering a more efficient approach than conventional binary logic in various applications. Here, the authors report the realization of a p-bit core device by combining stochastic magnetic tunnel junctions and 2D MoS2 transistors on the same chip.

    • John Daniel
    • , Zheng Sun
    •  & Joerg Appenzeller
  • Article
    | Open Access

    Efficient organic light-emitting diodes require a multilayer architecture to confine charge recombination to the emissive layer. Here, authors demonstrate efficient single-layer devices for emitters with imbalanced charge transport without the need of additional charge transport or blocking layers.

    • Xiao Tan
    • , Dehai Dou
    •  & Gert-Jan A. H. Wetzelaer
  • Comment
    | Open Access

    Aqueous zinc batteries are currently being explored as potential alternatives to non-aqueous lithium-ion batteries. In this comment, the authors highlight zinc’s global supply chain resilience and lower material costs yet caution about its higher mass requirement for comparable charge storage.

    • Alessandro Innocenti
    • , Dominic Bresser
    •  & Stefano Passerini
  • Article
    | Open Access

    The direct alkenylation with simple alkenes stands out as the most ideal yet challenging strategy for obtaining high-valued desaturated alkanes. Herein, the authors present a direct asymmetric dehydrogenative α-C(sp3)-H alkenylation of carbonyls based on synergistic photoredox-cobalt-chiral primary amine catalysis under visible light.

    • Zongbin Jia
    • , Liang Cheng
    •  & Sanzhong Luo
  • Article
    | Open Access

    Direct recycling of critical battery materials bring promise but a challenge for the mixed cathode chemistries. Here, the authors report a sustainable upcycling approach, transforming degraded LiFePO4 and Mn-rich cathodes into a high-voltage polyanionic material with an increased energy density and economic value.

    • Guanjun Ji
    • , Di Tang
    •  & Hui-Ming Cheng