Optics and photonics

  • Article
    | Open Access

    Semiconductor surface states often stand in the way of device performance, but here, the authors take advantage of them for wavelength conversion. They present a compact, passive conversion device insensitive to optical alignment by using plasmon-coupled surface states that enable the efficient conversion without nonlinear phenomena.

    • Deniz Turan
    • , Ping Keng Lu
    •  & Mona Jarrahi
  • Article
    | Open Access

    Imaging rates in single-pixel imaging has been limited by the dependence on configurable spatial light modulators. Here, the authors use cyclic Hadamard patterns coded onto a spinning mask to demonstrate dynamic imaging with rates up to 72 frames per second and real time reconstruction capabilities.

    • Evgeny Hahamovich
    • , Sagi Monin
    •  & Amir Rosenthal
  • Article
    | Open Access

    The authors develop a method to build Manhattan Raman Scattering (MARS) probes based on different core atoms, conjugation ring numbers, and stable isotope substitutions. A quantitative model predicts vibrational frequencies of MARS dyes from structures, which are used in supermultiplexed vibrational imaging.

    • Yupeng Miao
    • , Naixin Qian
    •  & Wei Min
  • Article
    | Open Access

    Microcavity exciton-polaritons in atomically thin semiconductors are a promising platform for valley manipulation. Here, the authors show valley-selective control of polariton energies in monolayer WS2 using the optical Stark effect, thereby extending coherent valley manipulation to a hybrid light-matter regime

    • Trevor LaMountain
    • , Jovan Nelson
    •  & Nathaniel P. Stern
  • Article
    | Open Access

    Coherent conversion between optical and microwave photonics is needed for future quantum applications. Here, the authors combine thin-film lithium niobate and superconductor platforms as a hybrid electro-optic system to achieve high-efficiency frequency conversion between microwave and optical modes.

    • Yuntao Xu
    • , Ayed Al Sayem
    •  & Hong X. Tang
  • Article
    | Open Access

    Electric field induced ion migration is a well-known phenomenon in perovskite, but the consequences are notorious, and thus needs to be prevented. Here, on the other hand, the authors cleverly manipulate this event for realising resistive random-access memory and light-emitting electrochemical cell in one device based on CsPbBr3 quantum dots.

    • Meng-Cheng Yen
    • , Chia-Jung Lee
    •  & Ya-Ju Lee
  • Article
    | Open Access

    Nuclear spins in diamond are promising for applications in quantum technologies due to their long coherence times. Here, the authors demonstrate a scalable electrical readout of individual intrinsic 14N nuclear spins in diamond, mediated by hyperfine coupling to electron spin of the NV center, as a step towards room-temperature nanoscale diamond quantum devices.

    • Michal Gulka
    • , Daniel Wirtitsch
    •  & Milos Nesladek
  • Article
    | Open Access

    Photonics-based radars offer intriguing potential but face tradeoffs in tunability, complexity, and noise. Here the authors present microwave generation in a photonics platform by heterodyning of two low-noise, self-injection-locked lasers, and demonstrate its advantages in an FMCW radar system.

    • Eric A. Kittlaus
    • , Danny Eliyahu
    •  & Siamak Forouhar
  • Article
    | Open Access

    Photon echo techniques are difficult to implement in the quantum regime due to coherent and spontaneous emission noise. Here, the authors propose a low-noise photon-echo quantum memory approach based on all-optical control in a four-level system, and demonstrate it using a Eu3+:Y2SiO5 crystal.

    • You-Zhi Ma
    • , Ming Jin
    •  & Guang-Can Guo
  • Article
    | Open Access

    Ensuring robustness of bound states in the continuum usually relies on precise control of geometrical symmetries, which are quite susceptible to fabrication imperfections. Here, the authors propose to exploit physical symmetries instead, as a way to achieve robust BICs in disordered systems.

    • Qingjia Zhou
    • , Yangyang Fu
    •  & Yadong Xu
  • Article
    | Open Access

    Photon upconversion with near-infrared excitation and ultraviolet emission has many applications, but suffers from low quantum efficiency. Here, the authors report a six-photon upconversion process in nanoparticles with heterogeneous core-multishell structure, that regulate the energy transfer pathway.

    • Qianqian Su
    • , Han-Lin Wei
    •  & Dayong Jin
  • Article
    | Open Access

    Reconfigurable wavelength-selective devices are essential components of flexible optical networks. Here the authors show a silicon-photonic add-drop multiplexer meeting the strict requirements of telecom systems in terms of broadband operation range, hitless tunability and polarization transparency.

    • Francesco Morichetti
    • , Maziyar Milanizadeh
    •  & Andrea Melloni
  • Article
    | Open Access

    Wavefront shaping is used to overcome scattering in biological tissues during imaging, but determining the compensation is slow. Here, the authors use holographic phase stepping interferometry, where new phase information is updated after each measurement, enabling fast improvement of the wavefront correction.

    • Molly A. May
    • , Nicolas Barré
    •  & Alexander Jesacher
  • Article
    | Open Access

    The established means of bandgap control in semiconductors are based on chemical, electrical or optical doping. Here, the authors report wide bandgap modulations in monolayer WS2 at room temperature by coupling the 2D semiconductor to a self-assembled plasmonic crystal inducing coherent hot electron doping.

    • Yu-Hui Chen
    • , Ronnie R. Tamming
    •  & Min Qiu
  • Article
    | Open Access

    Refraction between anisotropic media is still an unexplored phenomenon. Here, the authors investigate the propagation of hyperbolic phonon polaritons traversing α-MoO3 nanoprisms, showing a bending-free refraction effect and sub-diffractional focusing with foci size as small as 1/50 of the light wavelength in free space.

    • J. Duan
    • , G. Álvarez-Pérez
    •  & P. Alonso-González
  • Article
    | Open Access

    Photomutiplication-type organic photodetectors (PM-OPDs) are attractive for various next-generation technologies due to their lower cost, higher sensitivity and technological utility. Here, the authors report vacuum-processed narrowband PM-OPDs with enhanced sub-bandgap external quantum efficiency.

    • Jonas Kublitski
    • , Axel Fischer
    •  & Karl Leo
  • Article
    | Open Access

    Lead toxicity poses a big hurdle for the commercialization of perovskite optoelectronics, hence reducing the environmental impact holds the answer for its future application. To tackle this challenge, the authors utilize germanium to reduce the lead content, enabling highly luminescent eco-friendly compound for LEDs.

    • Dexin Yang
    • , Guoling Zhang
    •  & Dawei Di
  • Article
    | Open Access

    Frequency-comb-based multiheterodyne spectroscopy requires that total bandwidth of the measured spectrum covers less than half the comb spacing, which is usually not the case for incoherent spectra. Here, the authors propose a technique that lifts this requirement, and demonstrate it in the microwave regime.

    • David J. Benirschke
    • , Ningren Han
    •  & David Burghoff
  • Article
    | Open Access

    Metasurfaces allow for vast possibilities of light control. Here, the authors demonstrate on-demand engineering and realization of a broad family of two-dimensional phase singularity sheets and transverse polarization singularity sheets, opening up new aspects of light-matter interaction.

    • Soon Wei Daniel Lim
    • , Joon-Suh Park
    •  & Federico Capasso
  • Article
    | Open Access

    The Doppler effect is a wave phenomenon that can find the magnitude of velocity of moving targets with scalar waves. Here, the authors use vectorially structured light with spatially variant polarization to fully determine both the magnitude of velocity and motion direction of a moving particle.

    • Liang Fang
    • , Zhenyu Wan
    •  & Jian Wang
  • Article
    | Open Access

    Light in disordered materials generates rich interference patterns called speckle, whose properties are known only on the outside of a sample. Here, the authors provide direct measurements and understanding of speckle generated inside a material, retrieving fundamental information that remained inaccessible up to now.

    • Marco Leonetti
    • , Lorenzo Pattelli
    •  & Giancarlo Ruocco
  • Article
    | Open Access

    Strong nonlinearities, like high harmonic generation in optical systems, can lead to interesting applications in photonics. Here the authors fabricate a thin resonant gallium phosphide metasurface capable of avoiding the laser-induced damage and demonstrate efficient even and odd high harmonic generation from it when driven by mid-infrared laser pulses.

    • Maxim R. Shcherbakov
    • , Haizhong Zhang
    •  & Gennady Shvets
  • Article
    | Open Access

    Optoacoustic sensing applications are limited by weak electrostrictive force. Here, the authors induce photothermally acoustic vibrations with a focused pulsed laser, and via scanning demonstrate sensing of acoustic impedance at 10 µm spatial resolution, allowing for visualisation of diffusion dynamics.

    • Yizhi Liang
    • , Huojiao Sun
    •  & Bai-Ou Guan
  • Article
    | Open Access

    Though laser action has been reported for optical bound states in the continuum (BIC) cavities with high quality factors, these BIC lasers lacked practical applicability. Here, the authors report an ultralow-threshold super-BIC laser featuring merged symmetry-protected and accidental BICs.

    • Min-Soo Hwang
    • , Hoo-Cheol Lee
    •  & Hong-Gyu Park
  • Article
    | Open Access

    Optical readout techniques for nanomechanical force probes usually generate more heat than what can be dissipated through the nanoresonators. Here, the authors use an interferometric readout scheme, achieving large force sensitivity using suspended silicon carbide nanowires at dilution temperatures.

    • Francesco Fogliano
    • , Benjamin Besga
    •  & Olivier Arcizet
  • Article
    | Open Access

    Interatomic Coulombic decay, ICD, is commonly observed in systems weakly bound to different environments. Here the authors discuss the ICD in an electromagnetic cavity and show that the entanglement of atoms can change ICD rates substantially and be used to control the ICD process.

    • Lorenz S. Cederbaum
    •  & Alexander I. Kuleff
  • Article
    | Open Access

    Dissipative solitons and their symmetry breaking is important for photonic applications. Here the authors show that dissipative solitons can undergo spontaneous symmetry breaking in a two-component nonlinear optical ring resonator, resulting in the coexistence of distinct vectorial solitons with asymmetric, mirror-like states of polarization.

    • Gang Xu
    • , Alexander U. Nielsen
    •  & Miro Erkintalo
  • Review Article
    | Open Access

    The application space for optical fibers is growing, enabled by fibers built using special materials and processes. In this Review, the authors discuss the materials science behind producing crystalline core fibers for diverse applications and progress in the field.

    • Ursula J. Gibson
    • , Lei Wei
    •  & John Ballato
  • Article
    | Open Access

    Hybrid perovskite is a promising class of material for optoelectronic applications due to the slow hot-carrier cooling, yet the process is not well-understood in material with Rashba band splitting. Here, the authors reveal spin-flipping and spin-dependent scattering of hot electrons are responsible for accelerating the cooling at longer delays.

    • Jun Yin
    • , Rounak Naphade
    •  & Omar F. Mohammed
  • Article
    | Open Access

    The authors present a microwave imaging system that can operate in continuous transmit-receive mode. Using an array of transmitters, a single receiver and a reconstruction matrix that correlate random time patterns with the captured signal, they demonstrate real-time imaging and tracking through a wall.

    • Fabio C. S. da Silva
    • , Anthony B. Kos
    •  & Archita Hati
  • Article
    | Open Access

    The authors demonstrate accurate localization in three dimensions by comprehensive calibration of an ordinary microscope, exploiting the latent information of intrinsic aberrations. Rigid transformation of the emitter positions tests the method and enables measurements in six degrees of freedom.

    • Craig R. Copeland
    • , Craig D. McGray
    •  & Samuel M. Stavis
  • Article
    | Open Access

    Developing new methods for structuring light’s chirality in space would be advantageous for various next-generation applications. Here, the authors report enantio-sensitive unidirectional light bending by interacting light with isotropic chiral media.

    • David Ayuso
    • , Andres F. Ordonez
    •  & Olga Smirnova
  • Article
    | Open Access

    Direct visualisation of 3D vector distributions of photoinduced fields can shed light on the optical and mechanical behaviour of different materials. Here, the authors demonstrate such visualisation using photoinduced force microscopy by observing the optical gradient force at the nanometer scale.

    • Junsuke Yamanishi
    • , Hidemasa Yamane
    •  & Yasuhiro Sugawara
  • Review Article
    | Open Access

    This review presents an overview of scenarios where van der Waals (vdW) materials provide unique advantages for nanophotonic biosensing applications. The authors discuss basic sensing principles based on vdW materials, advantages of the reduced dimensionality as well as technological challenges.

    • Sang-Hyun Oh
    • , Hatice Altug
    •  & Michael S. Strano
  • Article
    | Open Access

    The angular dependence is a well-known issue in metasurface engineering. Here the authors introduce a supercell metasurface able to implement multiple independent functions under large deflection angles with high efficiency, leading to a wavelength tunable laser with arbitrary wavefront control.

    • Christina Spägele
    • , Michele Tamagnone
    •  & Federico Capasso
  • Article
    | Open Access

    Optical receivers based on graphene still suffer from low responsivity. Here, the authors integrate a photo-thermoelectric graphene photodetector with a Si micro-ring resonator, and obtain a voltage responsivity ~ 90 V/W and a reduction of energy-per-bit consumption, enabling performance on par with mature semiconductor technology.

    • S. Schuler
    • , J. E. Muench
    •  & T. Mueller
  • Article
    | Open Access

    Imaging through scattering media is possible using a transmission matrix or the memory effect. Here, the authors describe the nature of optical memory effects in structures of arbitrary geometry and use this framework to estimate the transmission matrix of an optical fibre from just one end.

    • Shuhui Li
    • , Simon A. R. Horsley
    •  & David B. Phillips
  • Article
    | Open Access

    Light field prints displaying 3D information often appear pixelated due to limited resolution and misalignment between lenses and colour pixels. Here, the authors present a one-step process via two-photon polymerization lithography to fabricate light field prints with high spatial and angular resolution.

    • John You En Chan
    • , Qifeng Ruan
    •  & Joel K. W. Yang
  • Article
    | Open Access

    It has been challenging to rotate nanoparticles orbitally via optical trapping beyond the diffraction limit. Here, the authors take advantage of the nonlinear optical effect and demonstrate fast and controlled orbital rotation at subwavelength scale with a femtosecond pulsed Gaussian beam.

    • Yaqiang Qin
    • , Lei-Ming Zhou
    •  & Yuqiang Jiang