Optical materials and structures articles within Nature Communications

Featured

  • Article
    | Open Access

    Nonlinear epsilon-near-zero nanodevices are attractive solutions for large-scale integrated system-on-chips yet heat genearation upon operation affects their performance. Here, the authors studied the linear and nonlinear thermo-optic effects in the indium tin oxide, commonly used material for this system.

    • Jiaye Wu
    • , Marco Clementi
    •  & Camille-Sophie Brès
  • Perspective
    | Open Access

    In order to complete the transition to the era of large-scale integration, silicon photonics will have to overcome several challenges. Here, the authors outline what these challenges are and what it will take to tackle them.

    • Sudip Shekhar
    • , Wim Bogaerts
    •  & Bhavin J. Shastri
  • Article
    | Open Access

    Progress has been made in the development of low-loss monocrystalline plasmonic metals, opening up opportunities for ultrathin nanophotonic architectures. Here, the authors reveal differences in hot-electron thermalisation dynamics between ultrathin monocrystalline and polycrystalline gold films.

    • Can O. Karaman
    • , Anton Yu. Bykov
    •  & Anatoly V. Zayats
  • Article
    | Open Access

    Multifunctional active mid-infrared ring resonators and directional couplers with quantum cascade laser cores allow electrical control of resonant frequency and quality factors, tunable filtering and frequency comb generation.

    • Dmitry Kazakov
    • , Theodore P. Letsou
    •  & Federico Capasso
  • Article
    | Open Access

    Light-matter interfaces implementing arbitrary conditional operations on incoming photons would have several applications in quantum computation and communications. Here, the authors demonstrate conditional polarization rotation induced by a single quantum dot spin embedded in an electrically contacted micropillar, spanning up to a pi flip.

    • E. Mehdi
    • , M. Gundín
    •  & L. Lanco
  • Article
    | Open Access

    Authors showcase 3D direct laser writing to fabricate optically interfaced mechanical resonators. The membrane-type structures are placed inside fiber Fabry-Perot cavities to realize a miniaturized optical cavity. Further, the optomechanical properties reveal the coupling mechanism and a significant tuning of the mechanical resonator frequency.

    • Lukas Tenbrake
    • , Alexander Faßbender
    •  & Hannes Pfeifer
  • Perspective
    | Open Access

    In this Perspective, the authors illustrate the physics of hyperbolic polaritons in anisotropic 2D and 1D materials, proposing new potential material candidates, forward looking opportunities and technological applications.

    • Hongwei Wang
    • , Anshuman Kumar
    •  & Tony Low
  • Article
    | Open Access

    The requirement for sophisticated objective lenses hinders the miniaturisation of single molecule fluorescence spectroscopy for portable sensing applications. Here, the authors demonstrate a dual-wavelength metalens for real-time monitoring of individual fluorescent nanoparticles.

    • Aleksandr Barulin
    • , Yeseul Kim
    •  & Inki Kim
  • Article
    | Open Access

    Chiroptic sensing of single molecule is extremely challenging. Here the authors unveil an extreme nanophotonic system based on nanoparticle-on-mirror shows exceptional high sensitivity of chiral supramolecules, which can resolve enantiomer access of a racemate monolayer, exhibiting great potential for single chiral molecule sensing.

    • Chi Zhang
    • , Huatian Hu
    •  & Tao Ding
  • Article
    | Open Access

    Wavefront manipulation with metasurfaces is typically limited to low quality factors. Here, the authors show how higher-order Mie modes can be leveraged to design high quality factor optical metasurfaces for wavefront manipulation in two dimensions.

    • Claudio U. Hail
    • , Morgan Foley
    •  & Harry A. Atwater
  • Article
    | Open Access

    Optical anapoles in nanoresonators result in strong suppression of the electromagnetic radiation, which is challenging to detect in ideal settings. Here, the authors show that fast electrons are a powerful tool to circumvent this challenge due to their ability to access dark modes.

    • Carlos Maciel-Escudero
    • , Andrew B. Yankovich
    •  & Timur O. Shegai
  • Article
    | Open Access

    Several solid-state defect platforms have been proposed for application as a spin-photon interface in quantum communication networks. Here the authors report spin-selective optical transitions and narrow inhomogeneous spectral distribution of V centers in isotopically-enriched SiC emitting in the telecom O-band.

    • Pasquale Cilibrizzi
    • , Muhammad Junaid Arshad
    •  & Cristian Bonato
  • Article
    | Open Access

    Metasurfaces enable all-optical geometric coordinate transformations, converting images with altered pixel spatial relations, which can facilitate fast, energy-efficient preprocessing for tasks like object tracking, or aid in laser manufacturing.

    • Xingwang Zhang
    • , Xiaojie Zhang
    •  & Xingjie Ni
  • Article
    | Open Access

    Developing quantum networks would require reliable sources of coherent quantum light at telecom wavelengths. Here, the authors employ elastic scattering of excitation laser photons on InAs/InP quantum dots to demonstrate the emission of telecom photons with coherence times longer than the Fourier limit.

    • L. Wells
    • , T. Müller
    •  & A. J. Shields
  • Article
    | Open Access

    The authors demonstrate real-time blind photonic interference cancellation using FPGA-photonic coordinated processing with zero calibration micro-ring resonator control and sub-second cancellation weight identification.

    • Joshua C. Lederman
    • , Weipeng Zhang
    •  & Paul R. Prucnal
  • Article
    | Open Access

    The researchers showcase all-crystalline and hybrid mid-infrared supermirrors with the lowest optical losses ever demonstrated in this wavelength range, representing an unprecedented improvement over any existing mirrors made with any production technology.

    • Gar-Wing Truong
    • , Lukas W. Perner
    •  & Garrett D. Cole
  • Article
    | Open Access

    The authors demonstrate how flexible metasurfaces powered by artificial neural network can dynamically manipulate the EM scattering behavior from an arbitrary surface - an ultimate ambition for many EM stealth and communication problems.

    • Erda Wen
    • , Xiaozhen Yang
    •  & Daniel F. Sievenpiper
  • Article
    | Open Access

    MEMS-based photonic integrated circuits (PICs) are often limited in speed by mechanical resonances. Here the authors report a programmable architecture for PICs which uses mechanical eigenmodes for synchronized, resonantly enhanced optical modulation.

    • Mark Dong
    • , Julia M. Boyle
    •  & Dirk Englund
  • Article
    | Open Access

    In this work, the authors use a surface plasmonic mechanism to efficiently confine TeraHertz photons inside ultrasmall cavities. These plasmonic-based TeraHertz cavities are shown to operate until the ultimate limit that is allowed fundamentally and at which plasmons start to behave in a nonlocal fashion.

    • Ian Aupiais
    • , Romain Grasset
    •  & Yannis Laplace
  • Article
    | Open Access

    The authors provide an experimental demonstration of magnetic field generation in graphene disks via the inverse Faraday effect. When the disks are illuminated with circularly polarized radiation in resonance with the graphene plasmon frequency, the corresponding rotational motion of the charge carriers gives rise to a unipolar magnetic field.

    • Jeong Woo Han
    • , Pavlo Sai
    •  & Martin Mittendorff
  • Article
    | Open Access

    Methods for generating macroscopic chiral matter struggle with limited scalability. Here, the authors show two vacuum filtration methods - twist stacking and mechanical rotation - to align carbon nanotubes into chiral structures at wafer scale with tunable circular dichroism.

    • Jacques Doumani
    • , Minhan Lou
    •  & Weilu Gao
  • Article
    | Open Access

    Current approaches to distinguish topological phases from topologically-trivial phases have limited general applicability. Here, in a photonic-crystal context, the authors demonstrate that in trivial structures the bulk local density of states (LDOS) extends all the way to the edges and corners, while in topological structures the bulk LDOS actually avoids the edges and corners.

    • Biye Xie
    • , Renwen Huang
    •  & Shuang Zhang
  • Article
    | Open Access

    Structured light has proven useful for numerous photonic applications. However, its current use in optical fibers is severely limited. The authors report a highly integrated metafiber platform based on 3D laser nanoprinting, capable of creating arbitrarily structured light.

    • Chenhao Li
    • , Torsten Wieduwilt
    •  & Haoran Ren
  • Article
    | Open Access

    The authors showcase a method to design negative lumped elements by engineering the effective permittivity within the waveguide, which enables realizations of wideband waveguide metatronics and promises performance enhancement in various fields.

    • Xu Qin
    • , Pengyu Fu
    •  & Yue Li
  • Article
    | Open Access

    Designing an efficient activation function for optical neural networks remains a challenge. Here, the authors demonstrate a modulator-detector-in-one graphene/silicon heterojunction ring resonators enabling on-chip reconfigurable activation function devices with phase activation capability for optical neural networks.

    • Chuyu Zhong
    • , Kun Liao
    •  & Hongtao Lin
  • Article
    | Open Access

    Preparation of photodiodes with photomultiplication/photovoltaic two operating modes is promising but challenging. Here, the authors report a bias-switchable dual-mode organic photodiode by adopting traps and blocking layer, achieving detectivity of 1012 Jones and fast response speed in both modes.

    • Qingxia Liu
    • , Lingfeng Li
    •  & Yadong Jiang
  • Article
    | Open Access

    Light-responsive polymers with polarization-dependent deformation are promising material to develop tunable devices usually limited by irreversible dynamic control. Here, the authors use controlled polarization of visible light to produce arbitrary deformations into amorphous composites containing azopolymer microdomains to unlock the next level of complex actuation in soft lightdriven robots.

    • David Urban
    • , Niccolò Marcucci
    •  & Emiliano Descrovi
  • Article
    | Open Access

    Researchers demonstrate robust optical communication around fully opaque occlusions, partially or entirely blocking the light path, using a pair of electronic encoder and passive diffractive decoder that are jointly optimized using deep learning.

    • Md Sadman Sakib Rahman
    • , Tianyi Gan
    •  & Aydogan Ozcan
  • Article
    | Open Access

    Gan et al. have developed sodium polyacrylate-based films for passive radiative cooling that can be fabricated using atmospheric moisture alone, offering radiative and evaporative cooling, reducing temperatures by up to 5 °C under partly cloudy skies.

    • Roisul Hasan Galib
    • , Yanpei Tian
    •  & Qiaoqiang Gan
  • Article
    | Open Access

    Laser machining can modify and reshape materials on the scale comparable to light’s wavelength. Here, authors use tailored microstructures to push the limit of laser machining to a scale that is almost 100 times smaller than a wavelength of light.

    • Maxim R. Shcherbakov
    • , Giovanni Sartorello
    •  & Gennady Shvets
  • Article
    | Open Access

    The Authors present an exciting dielectric waveguide mechanism that can confine light in regions of varying sizes, unlike conventional designs. The platform offers a unique blend of properties by leveraging radiation modes while minimizing optical losses. This work holds promise for serving as the next generation of fundamental building blocks for integrated photonics applications.

    • Janderson R. Rodrigues
    • , Utsav D. Dave
    •  & Michal Lipson
  • Article
    | Open Access

    Here, the authors experimentally discover a class of higher-order Weyl semimetal phase in a three-dimensional photonic crystal, exhibiting the concurrence of the surface and hinge Fermi arcs from the nonzero Chern number and the nontrivial generalized real Chern number, respectively, coined a real higher-order Weyl photonic crystals.

    • Yuang Pan
    • , Chaoxi Cui
    •  & Yihao Yang
  • Article
    | Open Access

    The authors present a comprehensive framework for on-demand dispersion control with a single-layer metasurface, particularly in an ultra-broad bandwidth. An achromatic metalens spanning the visible and near-infrared spectra is experimentally demonstrated.

    • Yueqiang Hu
    • , Yuting Jiang
    •  & Huigao Duan
  • Article
    | Open Access

    Phosphor efficiency can be improved via materials development or structural engineering, the latter only begun lately. Here the authors propose and investigate simple vertical resonant cavity as a platform for nanostructurally engineered phosphor.

    • Tae-Yun Lee
    • , Yeonsang Park
    •  & Heonsu Jeon
  • Article
    | Open Access

    The authors demonstrate here a method for the production of arbitrarily long, light-guiding microstructured fibers with shape-memory properties. The showcased design of adaptative fibers here holds potential for the development of functional actuators and sensors.

    • Clément Strutynski
    • , Marianne Evrard
    •  & Frédéric Smektala
  • Article
    | Open Access

    Here, the Authors demonstrate a 2D isotropic, polarization-independent, broadband edge detection with high transmission efficiency under both coherent and incoherent illumination along the visible range using a metasurface based on Fourier optics principles.

    • Ibrahim Tanriover
    • , Sina Abedini Dereshgi
    •  & Koray Aydin
  • Article
    | Open Access

    Here, the authors report the realization of a sub-THz wireless data link based on a graphene-integrated optoelectronic mixer with a >96 GHz bandwidth, −44 dB upconversion efficiency and <0.1 mm2 footprint, providing an alternative approach for the realization of millimeter-wave transmitters.

    • Alberto Montanaro
    • , Giulia Piccinini
    •  & Marco Romagnoli
  • Article
    | Open Access

    Integrating coherent light sources on surface wave platforms would offer opportunities for sensing and data processing. The authors realize a microfabricated coherent light source based on the stimulated emission of a guided Bloch surface wave mode.

    • Yang-Chun Lee
    • , Ya-Lun Ho
    •  & Jean-Jacques Delaunay
  • Article
    | Open Access

    The authors demonstrate an efficient way to generate high-purity vortex beams by applying optical neural networks to cascaded phase-only metasurfaces. Specifically, they present record-high-quality Laguerre-Gaussian (LGp,l) optical modes with polynomial orders p = 10 and l = 200 with purity in p, l and relative conversion efficiency of 96%, 85%, and 70%, respectively.

    • Feng Mei
    • , Geyang Qu
    •  & Shumin Xiao
  • Article
    | Open Access

    Recent years have seen a growing need for miniaturized spectroscopic tools. Here, authors present a novel integrated spectrometer with programmable photonic circuits, achieving record-high resolution and bandwidth via only a few filtering components.

    • Chunhui Yao
    • , Kangning Xu
    •  & Richard Penty
  • Article
    | Open Access

    Inspired by Alan Turing’s last works on morphogenesis, this research introduces a technique for generating metasurfaces through the emergence of anisotropic patterns capable of self-structuring in response to electromagnetic constraints.

    • Thomas Fromenteze
    • , Okan Yurduseven
    •  & Cyril Decroze