Silicon photonics articles within Nature Communications

Featured

  • Article
    | Open Access

    Here the authors develop a coupled ring resonators platform for realizing topological states of matter with hyperbolic dispersion thus offering an approach to boost the efficiency of topological photonic devices.

    • Lei Huang
    • , Lu He
    •  & Xiangdong Zhang
  • Article
    | Open Access

    An efficient and physically accurate platform is required to rapidly design high-performance integrated photonic devices. Here, the authors present a scalable framework for creating on-chip optical systems with complex and arbitrary functionality.

    • Ali Najjar Amiri
    • , Aycan Deniz Vit
    •  & Emir Salih Magden
  • Article
    | Open Access

    The authors showcase a five-channel silicon microring modulator array with a total data rate in the terabit range. Each microring is equipped with two separate Z-shape junctions to overcome the bandwidth and modulation efficiency trade-off, providing a pathway for future 200 Gb/s/lane silicon optical interconnects.

    • Yuan Yuan
    • , Yiwei Peng
    •  & Raymond G. Beausoleil
  • Article
    | Open Access

    Silicon microring resonator plays crucial role in optical computing owing to the compact footprint and energy-efficiency, yet existing modulators require >2 V to drive it. Here, the authors present a solution to this by using metal-oxide-semiconductor capacitor microring that brings down the driving voltage to 0.8 V.

    • Wei-Che Hsu
    • , Nabila Nujhat
    •  & Alan X. Wang
  • Perspective
    | Open Access

    In order to complete the transition to the era of large-scale integration, silicon photonics will have to overcome several challenges. Here, the authors outline what these challenges are and what it will take to tackle them.

    • Sudip Shekhar
    • , Wim Bogaerts
    •  & Bhavin J. Shastri
  • Article
    | Open Access

    The authors demonstrate real-time blind photonic interference cancellation using FPGA-photonic coordinated processing with zero calibration micro-ring resonator control and sub-second cancellation weight identification.

    • Joshua C. Lederman
    • , Weipeng Zhang
    •  & Paul R. Prucnal
  • Article
    | Open Access

    MEMS-based photonic integrated circuits (PICs) are often limited in speed by mechanical resonances. Here the authors report a programmable architecture for PICs which uses mechanical eigenmodes for synchronized, resonantly enhanced optical modulation.

    • Mark Dong
    • , Julia M. Boyle
    •  & Dirk Englund
  • Article
    | Open Access

    Designing an efficient activation function for optical neural networks remains a challenge. Here, the authors demonstrate a modulator-detector-in-one graphene/silicon heterojunction ring resonators enabling on-chip reconfigurable activation function devices with phase activation capability for optical neural networks.

    • Chuyu Zhong
    • , Kun Liao
    •  & Hongtao Lin
  • Article
    | Open Access

    The Authors present an exciting dielectric waveguide mechanism that can confine light in regions of varying sizes, unlike conventional designs. The platform offers a unique blend of properties by leveraging radiation modes while minimizing optical losses. This work holds promise for serving as the next generation of fundamental building blocks for integrated photonics applications.

    • Janderson R. Rodrigues
    • , Utsav D. Dave
    •  & Michal Lipson
  • Article
    | Open Access

    Here, the authors report the realization of a sub-THz wireless data link based on a graphene-integrated optoelectronic mixer with a >96 GHz bandwidth, −44 dB upconversion efficiency and <0.1 mm2 footprint, providing an alternative approach for the realization of millimeter-wave transmitters.

    • Alberto Montanaro
    • , Giulia Piccinini
    •  & Marco Romagnoli
  • Article
    | Open Access

    Recent years have seen a growing need for miniaturized spectroscopic tools. Here, authors present a novel integrated spectrometer with programmable photonic circuits, achieving record-high resolution and bandwidth via only a few filtering components.

    • Chunhui Yao
    • , Kangning Xu
    •  & Richard Penty
  • Article
    | Open Access

    Phase change materials (PCMs) are promising for low-power programmable photonic circuits. Here, authors show electrically controlled wide-bandgap PCM antimony sulfide achieving low loss, high cyclability and up to 32 levels, and post-fabrication trimming is also demonstrated.

    • Rui Chen
    • , Zhuoran Fang
    •  & Arka Majumdar
  • Article
    | Open Access

    Realising integrated photonic circuits containing isolated telecommunications-wavelength artificial atom single photon emitters is an outstanding challenge in quantum technologies. Here, the authors demonstrate how to embed optically tunable G-centers in silicon-on-insulator integrated circuits.

    • Mihika Prabhu
    • , Carlos Errando-Herranz
    •  & Dirk Englund
  • Article
    | Open Access

    Optical neural networks face remarkable challenges in high-level integration and on-chip operation. In this work the authors enable optical convolution utilizing time-wavelength plane stretching approach on a microcomb-driven chip-based photonic processing unit.

    • Bowen Bai
    • , Qipeng Yang
    •  & Xingjun Wang
  • Article
    | Open Access

    Fabrication errors limit the scaling of programmable photonic circuits. Here the authors show how a broad class of circuits can be made asymptotically fault-tolerant, where the effect of errors remains controlled regardless of the circuit’s size.

    • Ryan Hamerly
    • , Saumil Bandyopadhyay
    •  & Dirk Englund
  • Article
    | Open Access

    Efficient and broadband visible-light photodetectors will bring great advantages in applications such as biosensing and quantum information. Here the authors develop a photodetector with high quantum efficiency across broad wavelength range suitable for monolithic integration in photonics circuits.

    • Yiding Lin
    • , Zheng Yong
    •  & Joyce K. S. Poon
  • Article
    | Open Access

    Here the authors provide the experimental observation of a topological rainbow in a silicon-based nanophotonic chip. The system is robust against disorders allows to separate and trap topological photonic states of different wavelength into different positions.

    • Cuicui Lu
    • , Yi-Zhi Sun
    •  & C. T. Chan
  • Article
    | Open Access

    Metasystem architectures are attractive alternatives to waveguide-based integrated photonic processors due to the subwavelength structures. Here, the authors report a 1D passive silicon photonic metasystem with near 90% spatial pattern classification accuracy at telecommunication wavelength.

    • Zi Wang
    • , Lorry Chang
    •  & Tingyi Gu
  • Article
    | Open Access

    Chiral mode converters are found in a wide range of practical applications in optics, but the previous proposals suffer from low efficiency and large device size. Here the authors propose a highly efficient and compact chiral mode converter based on encircling exceptional points along Hamiltonian parameter space boundary, relaxing the adiabaticity constraints.

    • Xiaoqian Shu
    • , Aodong Li
    •  & Lin Chen
  • Article
    | Open Access

    ’Here the authors provide the demonstration of platicon comb generation in an integrated photonic chip using laser self-injection locking, They take advantage of platicons generation in normal GVD resonators, which significantly relaxes the material and geometry design restrictions

    • Grigory Lihachev
    • , Wenle Weng
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    To realize on-chip optical communication schemes based on silicon, the integration of waveguides onto III-V devices must be achieved. Here, the authors report waveguide-coupled III-V heterostructure photodiodes monolithically integrated on silicon waveguides via aligned nanowire.

    • Pengyan Wen
    • , Preksha Tiwari
    •  & Kirsten E. Moselund
  • Article
    | Open Access

    Achieving high output power and low noise integrated lasers is a major challenge. Here the authors experimentally demonstrate integrated lasers from a Si/SiN heterogeneous platform that shows Hertz-level linewidth, paving the way toward fully integrating low-noise silicon nitride photonics in volume using real devices for lasing.

    • Chao Xiang
    • , Joel Guo
    •  & John E. Bowers
  • Article
    | Open Access

    Nonreciprocal devices are crucial in scientific research and practical applications at all frequencies. Here the authors demonstrate an integrated terahertz optical isolator based on the magneto-optical effect in a nonreciprocal resonator.

    • Shixing Yuan
    • , Liao Chen
    •  & Xinliang Zhang
  • Article
    | Open Access

    Reconfigurable wavelength-selective devices are essential components of flexible optical networks. Here the authors show a silicon-photonic add-drop multiplexer meeting the strict requirements of telecom systems in terms of broadband operation range, hitless tunability and polarization transparency.

    • Francesco Morichetti
    • , Maziyar Milanizadeh
    •  & Andrea Melloni
  • Article
    | Open Access

    Compact spectrometers that are simple and scalable in design can enable many applications. Here the authors demonstrate a silicon photonics based single-shot spectrometer that uses a group of waveguide frequency filters to construct the spectrum.

    • Ang Li
    •  & Yeshaiahu Fainman
  • Article
    | Open Access

    For widespread technological application of nonlinear photonic integrated circuits, ultralow optical losses and high fabrication throughput are required. Here, the authors present a CMOS fabrication technique that realizes integrate photonic microresonators on waver-level with mean quality factors exceeding 30 million and 1 dB/m optical losses.

    • Junqiu Liu
    • , Guanhao Huang
    •  & Tobias J. Kippenberg
  • Article
    | Open Access

    Most demonstrations of optical neural networks for computing have been so far limited to real-valued frameworks. Here, the authors implement complex-valued operations in an optical neural chip that integrates input preparation, weight multiplication and output generation within a single device.

    • H. Zhang
    • , M. Gu
    •  & A. Q. Liu
  • Article
    | Open Access

    Fano resonances occur in many platforms that have auto-ionizing states. Here the authors show that auto-ionizing states are not required for multi-photon Fano resonance in a Si:P system with significant screening by using a pump-probe method.

    • K. L. Litvinenko
    • , Nguyen H. Le
    •  & B. N. Murdin
  • Article
    | Open Access

    Information and communication datacentres require a large amount of energy for their cooling systems, which could be decreased by working at higher temperatures. Here, the authors introduce a silicon-polymer hybrid modulator that maintains high data rates for long periods at high temperatures that could be used under such conditions, to reduce energy consumption.

    • Guo-Wei Lu
    • , Jianxun Hong
    •  & Shiyoshi Yokoyama
  • Article
    | Open Access

    Resonant structures are a promising method to enhance the nonlinear response of Si, however they are typically larger than 10 μm. Here, the authors present Si nano-resonators that amplify photothermal nonlinearity, resulting in reversible and repeatable modulation.

    • Yi-Shiou Duh
    • , Yusuke Nagasaki
    •  & Shi-Wei Chu
  • Article
    | Open Access

    Integrated photonics allows integration of complex optical circuits on a single chip. Here, the authors propose a wavelength division multiplexing based electronic-photonic arithmetic logic unit for computing at high speeds and with improved power consumption to help with the physical limits of Moore’s law.

    • Zhoufeng Ying
    • , Chenghao Feng
    •  & Ray T. Chen
  • Article
    | Open Access

    Most efficient terahertz detection schemes rely on complex free space optics and require high-power lasers. Here, the authors report an integrated plasmonic terahertz detector on a silicon photonics platform, with 2.5 THz bandwidth and a 65 dB dynamical range operating at an optical power of only 63 nW.

    • Yannick Salamin
    • , Ileana-Cristina Benea-Chelmus
    •  & Juerg Leuthold
  • Article
    | Open Access

    Integration of photonic circuits with single photon emitters provides a promising route towards scalable quantum photonic chips. Here, the authors integrate a WSe2 monolayer onto a SiN chip and demonstrate the coupling of single photon emitters in WSe2 with the guided mode of a SiN waveguide.

    • Frédéric Peyskens
    • , Chitraleema Chakraborty
    •  & Dirk Englund
  • Article
    | Open Access

    The authors implement surface acoustic waves on the silicon photonics platform by exciting a metallic grating with modulated pump light to enable microwave-photonic devices without the need for piezo-electric actuation, complex suspensions or hybrid materials.

    • Dvir Munk
    • , Moshe Katzman
    •  & Avi Zadok
  • Article
    | Open Access

    On-chip mode-division multiplexing has many challenges including crosstalk, losses, and footprint.  Here the authors use a nanohole metastructure to create multiplexed bends and crossings for photonic data communications circuit routing with high density that combats these challenges.

    • Yingjie Liu
    • , Ke Xu
    •  & Qinghai Song
  • Article
    | Open Access

    Increasing bandwidth demands in optical communications requires components to be compact with energy-efficient operation. Here, the authors demonstrate plasmonic IQ modulators on a silicon photonics platform with phase shifters, operating with sub-1V electronics at 100 GBaud and low electrical energy consumption.

    • Wolfgang Heni
    • , Yuriy Fedoryshyn
    •  & Juerg Leuthold
  • Article
    | Open Access

    TIRF imaging is limited by the size and uniformity of the illumination. Here the authors present a waveguide solution to create a large area of uniform evanescent illumination suitable for single molecule imaging coupled with a customised sample holder containing a reservoir for DNA-PAINT solutions.

    • Anna Archetti
    • , Evgenii Glushkov
    •  & Suliana Manley
  • Article
    | Open Access

    Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom.

    • Xin-Tao He
    • , En-Tao Liang
    •  & Jian-Wen Dong
  • Article
    | Open Access

    Realizing efficient on-chip amplification in silicon is challenging due to either non-compatible integration or small gain per unit length of the amplifier material. Here, the authors report ultra-high on-chip optical gain in erbium-based hybrid silicon nitride slot waveguides with a monolithic, CMOS-compatible and scalable atomic-layer deposition process.

    • John Rönn
    • , Weiwei Zhang
    •  & Zhipei Sun