Ocean sciences articles within Nature Communications

Featured

  • Article
    | Open Access

    Brandl, Johansen et al. compare organismal traits, community structure, and productivity dynamics of cryptobenthic reef fishes across two locations, the Arabian Gulf and the Gulf of Oman, the former of which harbors the world’s hottest coral reefs. They show that environmental extremes in the Arabian Gulf result in dramatically less diverse, abundant, and productive cryptobenthic fish assemblages, which could foreshadow the future of coral reef biodiversity and functioning.

    • Simon J. Brandl
    • , Jacob L. Johansen
    •  & John A. Burt
  • Article
    | Open Access

    Predicted sea-level rise is widely anticipated to lead to increased coastal erosion, however, assessing how rocky coasts will respond to changes in marine conditions is difficult to constrain. Here, the authors find that a North Yorkshire rocky cliff has been eroding at a similar rate over the last 7 kyr, and they do not observe an increase in erosion rates in response to modern sea level rise.

    • Zuzanna M. Swirad
    • , Nick J. Rosser
    •  & John Barlow
  • Article
    | Open Access

    Ocean oxygen minimum zones (OMZs) are known to emit the powerful greenhouse gas N2O, but global emission dynamics are not constrained. Here the authors use air trajectory analyses and find that air masses pick up N2O as they pass over OMZs, and that overall concentrations are elevated during La Niña events.

    • Andrew R. Babbin
    • , Elisabeth L. Boles
    •  & Ray F. Weiss
  • Perspective
    | Open Access

    Oceans provide important natural resources, but the management and governance of the ocean is complex and the ecosystem is suffering as a result. The authors discuss current barriers to sustainable ocean governance and suggest pathways forward.

    • Tanya Brodie Rudolph
    • , Mary Ruckelshaus
    •  & Philile Mbatha
  • Article
    | Open Access

    Anthropogenic stressors affect many aspects of marine organismal health. Here, the authors expose surgeonfish to temperature and pesticide stressors and show that the stressors, separately and in combination, have adverse effects on thyroid signaling, which disrupts several sensory systems and important predation defenses.

    • Marc Besson
    • , William E. Feeney
    •  & David Lecchini
  • Article
    | Open Access

    Microbial ammonia oxidation is important in marine nutrient cycling and greenhouse gas dynamics, but the responses to ocean warming are unclear. Here coast to open ocean incubations show that projected year 2100 temperatures might be too hot for these microbes in oligotrophic regions to handle, but may facilitate oxidation rates in coastal waters.

    • Zhen-Zhen Zheng
    • , Li-Wei Zheng
    •  & Shuh-Ji Kao
  • Article
    | Open Access

    Little is known about gene expression of organisms in the deep sea, partially owing to constraints on sampling these organisms in situ. Here the authors circumvent this problem, fixing tissue of a deep-sea mussel at 1,688 m in depth, and later analyzing transcriptomes to reveal gene expression patterns showing tidal oscillations.

    • Audrey M. Mat
    • , Jozée Sarrazin
    •  & Marjolaine Matabos
  • Article
    | Open Access

    Monomethylmercury is a toxin that humans can be exposed to after consumption of seafood in which it has bioaccumulated. Here the authors show that amphipods in the deepest point of the global ocean contain monomethylmercury with surface origins, suggesting rapid sinking of this toxin on particles.

    • Ruoyu Sun
    • , Jingjing Yuan
    •  & Congqiang Liu
  • Article
    | Open Access

    The authors here report tensile properties of polycrystalline methane hydrate at the micron scale by applying a contactless, thermos-induced stress to a tenuous shell of hydrate grown in a thin glass capillary. The results suggest that the cohesive strength of methane hydrate in marine settings may be an order of magnitude less than currently thought.

    • Dyhia Atig
    • , Daniel Broseta
    •  & Ross Brown
  • Article
    | Open Access

    Satellites can observe marine phytoplankton, but observations are sparse in seasonally dark, cloudy environments like the Southern Ocean. These authors use Argo floats to track the fate of phytoplankton blooms off Antarctica and determine 10% of biomass is exported, while 90% is prey to grazing.

    • Sébastien Moreau
    • , Philip W. Boyd
    •  & Peter G. Strutton
  • Article
    | Open Access

    Black carbon is a recalcitrant and unique form of organic carbon formed from incomplete combustion. Here the authors use global sampling to reduce uncertainty in the flux of terrestrial black carbon to the oceans, predicting that 34% of black carbon produced by fires has an oceanic fate.

    • Matthew W. Jones
    • , Alysha I. Coppola
    •  & Timothy A. Quine
  • Article
    | Open Access

    Anthropogenic CO2 is acidifying the ocean, but knowledge of the carbonate properties underlying these dynamics in coastal oceans is lacking. Here, the authors reveal spatial distribution patterns and variability in carbonate chemistry along North America’s coasts.

    • Wei-Jun Cai
    • , Yuan-Yuan Xu
    •  & Dwight K. Gledhill
  • Article
    | Open Access

    Every year, hundreds of people die at sea because of vessel accidents, and a key challenge in reducing these fatalities is to make Search and Rescue (SAR) planning more efficient. Here, the authors uncover hidden flow features that attract floating objects, providing specific information for optimal SAR planning.

    • Mattia Serra
    • , Pratik Sathe
    •  & George Haller
  • Article
    | Open Access

    Plastic pollution has infiltrated every ecosystem, but few studies have quantified the biogeochemical or ecological effects of plastic. Here the authors show that microplastics in ocean sediment can significantly alter microbial community structure and nitrogen cycling.

    • Meredith E. Seeley
    • , Bongkeun Song
    •  & Robert C. Hale
  • Article
    | Open Access

    Numerous marine ecosystem models are used to project animal biomass over time but integrating them can be challenging. Here the authors develop a test for statistical significance in multi-model ensemble trends, and thus relate future biomass trends to current patterns of ecological and socioeconomic status.

    • Daniel G. Boyce
    • , Heike K. Lotze
    •  & Boris Worm
  • Article
    | Open Access

    Previous work suggests that marine oxygen levels and bioturbation are important factors that shape phosphorus burial and the size of the marine biosphere. Here the authors show that seawater calcium concentration is a key factor in controlling marine P burial, and thus the global oxygen cycle.

    • Mingyu Zhao
    • , Shuang Zhang
    •  & Noah Planavsky
  • Article
    | Open Access

    Observations of global ocean heat content during 2005–2015 have shown a strong hemispheric asymmetry, and the southern hemisphere accounts 92% of the total heat gain. Here, the authors show that the rate of observed global ocean warming is consistent with a forced symmetric climate change signal and an asymmetric climate variation for this period.

    • Saurabh Rathore
    • , Nathaniel L. Bindoff
    •  & Ming Feng
  • Article
    | Open Access

    It is unclear whether rapid climate change will alter the effectiveness of marine reserves. Here Graham et al. use a 20-year time-series from the Seychelles to show that marine reserves may not prevent climate-driven shifts in community composition, and that ecological responses to reserves are substantially altered.

    • Nicholas A. J. Graham
    • , James P. W. Robinson
    •  & Shaun K. Wilson
  • Article
    | Open Access

    The non-linear interaction between tide and non-tidal residual impacts current and future extreme water levels. Here, based on 620 gauge records, the authors find a large non-linear interaction in the US East Coast, North Sea and parts of southern Japan, that results in a reduction of extreme sea levels.

    • Arne Arns
    • , Thomas Wahl
    •  & Jürgen Jensen
  • Article
    | Open Access

    Global ocean circulation overturns and starts anew in the North Atlantic, propagating climate signals to the rest of the oceans. Using drifter data, Zou and colleagues re-map the spreading pattern for one of the deep water masses and show the impact of mesoscale processes on that pattern.

    • Sijia Zou
    • , Amy Bower
    •  & Xiaobiao Xu
  • Article
    | Open Access

    Global environmental changes threaten many food-producing sectors, including aquaculture. Here the authors show that countries most vulnerable to climate change will probably face the highest antimicrobial resistance in aquaculture-related bacteria, and that infected aquatic animals have higher mortality at warmer temperatures.

    • Miriam Reverter
    • , Samira Sarter
    •  & Rodolphe E. Gozlan
  • Article
    | Open Access

    Marine heatwaves are threatening ocean ecosystems with increasing frequency, but their seasonal drivers are unknown. Here, the authors determine that summertime blobs of warm temperature anomalies in the Pacific occur as a result of prolonged weakening in the North Pacific High-Pressure System.

    • Dillon J. Amaya
    • , Arthur J. Miller
    •  & Yu Kosaka
  • Article
    | Open Access

    Estuaries are diverse and important aquatic ecosystems, yet we lack information on their response to climate change. Here, the authors show that east Australian estuaries are warming and acidifying faster than predicted by ocean or atmospheric models; a trend that is magnified in shallow estuaries.

    • Elliot Scanes
    • , Peter R. Scanes
    •  & Pauline M. Ross
  • Article
    | Open Access

    Corals have evolved as finely tuned light collectors. Here, the authors report on the 3D printing of coral-inspired biomaterials, that mimic the coral-algal symbiosis; these bionic corals lead to dense microalgal growth and can find applications in algal biotechnology and applied coral science.

    • Daniel Wangpraseurt
    • , Shangting You
    •  & Silvia Vignolini
  • Article
    | Open Access

    The North Atlantic current has been suspected to trigger intrusions of temperate marine species in the Arctic. Here, Oziel and colleagues reveal the link between the poleward intrusion of the temperate coccolithophore Emiliania huxleyi and the North Atlantic current, showing evidence for bio-advection as an important mechanism.

    • L. Oziel
    • , A. Baudena
    •  & M. Babin
  • Article
    | Open Access

    Global atmospheric CO2 varies between glacial–interglacial cycles. Here, the authors study these changes using Si records and how the Si flux and ocean circulation changes controlled the global Si distribution across the last deglaciation, based on high-resolution Si-isotope records from the Indian Sector Southern Ocean.

    • M. Dumont
    • , L. Pichevin
    •  & R. Ganeshram
  • Article
    | Open Access

    Coastal pollution degrades ecosystems, but long term impacts are unknown in Australia’s Great Barrier Reef. Using a 333 year record of coral skeleton nitrogen isotopes, Erler and colleagues show that increasing nutrient inputs since European settlement have led to unexpected feedback responses.

    • Dirk V. Erler
    • , Hanieh Tohidi Farid
    •  & Janice M. Lough
  • Article
    | Open Access

    In this study, the authors show that water flowing through thawed soils below the tundra surface (supra-permafrost groundwater) can be a major source of dissolved organic matter (DOM) to Arctic coastal waters during the summer. This DOM contains leachates from old soil carbon stocks, including potential contributions from thawing permafrost.

    • Craig T. Connolly
    • , M. Bayani Cardenas
    •  & James W. McClelland
  • Article
    | Open Access

    The authors here combine a range of geophysical data, numerical modelling and borehole data to present a high resolution map of an offshore freshened groundwater system in the Canterbury Bight, New Zealand. The study shows the extensions of the offshore freshened groundwater system to be controlled by high permeability shelf sediments, buried paleochannels and onshore rivers.

    • Aaron Micallef
    • , Mark Person
    •  & Ashwani Kumar Tiwari
  • Article
    | Open Access

    The Southern Ocean is an important sink of carbon via the biological pump. Here authors run high-resolution physical/biogeochemical simulations of an open-Southern Ocean ecosystem forced with a realistic seasonal cycle and confirm that (sub)mesoscale iron transport across the mixing-layer base sustains primary productivity.

    • Takaya Uchida
    • , Dhruv Balwada
    •  & Marina Lévy
  • Article
    | Open Access

    Eddies are common ocean features that isolate large swaths of seawater, but it is unclear how they influence productivity of phytoplankton trapped inside. Here Ellwood and colleagues use stable and radiogenic isotopes to characterize a Southern Ocean eddy, finding vanishingly low iron concentrations that drive low productivity across the region.

    • Michael J. Ellwood
    • , Robert F. Strzepek
    •  & Philip W. Boyd
  • Article
    | Open Access

    Biogeographic patterns of genetic diversity are poorly documented, especially for fish species. Here the authors show that (mitochondrial) genetic diversity has global spatial organization patterns with different environmental drivers for marine and freshwater fishes, where genetic diversity is only partly congruent with species richness.

    • Stéphanie Manel
    • , Pierre-Edouard Guerin
    •  & Loïc Pellissier
  • Article
    | Open Access

    The freshwater content of the Beaufort Gyre in the Western Arctic Ocean has increased in response to almost two decades of persistent anti-cyclonic winds. Here, the authors found that dramatic loss of sea ice and acceleration of surface currents after 2007 led to a net annual wind energy input to the Beaufort Gyre, and anticipate that continued sea ice decline will lead to an increasingly energetic Beaufort Gyre.

    • Thomas W. K. Armitage
    • , Georgy E. Manucharyan
    •  & Andrew F. Thompson
  • Article
    | Open Access

    What drives hydroclimate changes in tropical regions is not well known. Here, the authors present a 12,000 year long precipitation record from Guetemala which shows that exceeding a threshold in sea surface temperatures caused Central American rainfall to change from a dry to an active convective regime around 9000 years ago.

    • Amos Winter
    • , Davide Zanchettin
    •  & Carla Taricco
  • Article
    | Open Access

    Tropical cyclones can cause severe damage, in particular through flooding of coastal areas. Here, the authors show that in addition to known impacts, tropical cyclone rainbands can cause meteotsunami waves that can contribute significantly to the total water levels and hence flooding risks.

    • Luming Shi
    • , Maitane Olabarrieta
    •  & John C. Warner
  • Article
    | Open Access

    Increasingly, eDNA is being used to infer ecological interactions. Here the authors sample eDNA over 18 months in a marine environment and use co-occurrence network analyses to infer potential interactions among organisms from microbes to mammals, testing how they change over time in response to oceanographic factors.

    • Anni Djurhuus
    • , Collin J. Closek
    •  & Mya Breitbart
  • Article
    | Open Access

    In this study, the authors use planktic foraminiferal data to reconstruct ocean carbonate chemistry and temperature from 16.5 to 11 Ma from a size in the tropical eastern Indian Ocean to look at the causes of the Monterey Excursion (ME). They find a positive relationship between dissolved inorganic (DIC) carbon and the ME and a negative one for DIC and the carbon maxima events.

    • S. M. Sosdian
    • , T. L. Babila
    •  & C. H. Lear
  • Article
    | Open Access

    The relationship between the coral animal and symbiotic algae is essential to coral health, and researchers are turning to Exaiptasia, a model cnidarian system, to study this relationship mechanistically. Here the authors find that endosymbiotic algae become limited by nitrogen at high population densities and provide the host with high levels of fixed carbon.

    • Tingting Xiang
    • , Erik Lehnert
    •  & Arthur R. Grossman
  • Article
    | Open Access

    Recent recession of the Larsen Ice Shelf C has revealed that microbial alteration of illite can occur within marine sediments, a process previously thought to only occur abiotically during low-grade metamorphism. Here, the authors show that such microbial alteration of illite could provide a potential source of Fe release to Southern Ocean waters during Holocene glacial cycles.

    • Jaewoo Jung
    • , Kyu-Cheul Yoo
    •  & Jinwook Kim
  • Article
    | Open Access

    The Nd isotope composition of seawater has been used to reconstruct past changes in the various contributions of different water masses to the deep ocean, with the isotope signatures of endmember water masses generally assumed to have been stable during the Quaternary. Here, the authors show that deep water produced in the North Atlantic had a significantly more radiogenic Nd signature during the Last Glacial Maximum compared to today.

    • Ning Zhao
    • , Delia W. Oppo
    •  & Lloyd D. Keigwin
  • Article
    | Open Access

    Distributed acoustic sensing (DAS) technology in geophysics is commonly known for applications such as active source seismic profiling in boreholes. Here, the authors convert the fiber optics cable into an ocean bottom seismic recording array with thousands of single component channels.

    • Ethan F. Williams
    • , María R. Fernández-Ruiz
    •  & Hugo F. Martins
  • Article
    | Open Access

    Earth’s carbon cycle and oceanic magnesium cycle are controlled by processes such as weathering, volcanism and precipitation of carbonates, such as dolomite. Here, the authors contradict the view that modern dolomite formation is rare and suggest instead that dolomite accounts for ~40–60% of the global oceanic Mg output in the last 20 Ma.

    • Netta Shalev
    • , Tomaso R. R. Bontognali
    •  & Derek Vance
  • Review Article
    | Open Access

    The recent collapses of ice shelves in Antarctica due to warming make it essential to understand past ice shelf conditions and mechanisms. Here Smith and colleagues review the latest progress in deciphering the geological imprint of Antarctic ice shelves via sediments, landforms and proxy indicators.

    • James A. Smith
    • , Alastair G. C. Graham
    •  & Ross D. Powell
  • Article
    | Open Access

    Carbon dioxide removal technologies are often touted as a potential strategy to combat ocean acidification. However, the authors show here that these strategies are only effective when included as part of aggressive and rapid climate-action, undermining the idea of geoengineering as a panacea.

    • M. Hofmann
    • , S. Mathesius
    •  & H. J. Schellnhuber