Nanoscience and technology

  • Article
    | Open Access

    Single molecule force spectroscopy methods are often low throughput and have high instrument cost. Here the authors report FLO-Chip, a low-cost, high throughput technique using microfluidics for multiplexed mechanical manipulation of many individual molecules via molecular fluid loading on-a-chip.

    • Ehsan Akbari
    • , Melika Shahhosseini
    •  & Carlos E. Castro
  • Article
    | Open Access

    The adoption of photonic synapses with biosimilarity to realize analog signal transmission is of significance in realizing artificial illuminance modulation responses. Here, the authors report a biomimetic ocular prosthesis system based on quantum dots embedded photonic synapses with improved depression properties through mid-gap trap.

    • Seongchan Kim
    • , Yoon Young Choi
    •  & Jeong Ho Cho
  • Article
    | Open Access

    Here, the authors attribute the ambient surface contamination of van der Waals materials to a self-organized molecular layer of normal alkanes with lengths of 20-26 carbon atoms. The alkane adlayer displaces the manifold other airborne contaminant species, capping the surface of graphene, graphite, hBN and MoS2.

    • András Pálinkás
    • , György Kálvin
    •  & Péter Nemes-Incze
  • Article
    | Open Access

    Interlayer spacing and termination are important for controlling the physical and chemical properties of MXenes, largely affecting their potential applications. Here authors present a general approach for simultaneously tuning the interlayer spacing and termination of MXenes using Lewis-basic halides.

    • Tianze Zhang
    • , Libo Chang
    •  & Xu Xiao
  • Article
    | Open Access

    Improving fuel cell technologies based on Pt-based alloys is important for efficient fuel cells. Here, the authors report a hybrid PtCo alloy electrocatalyst for acidic oxygen reduction at high current densities and H2/air fuel cell power densities.

    • Lei Huang
    • , Min Wei
    •  & Bao Yu Xia
  • Article
    | Open Access

    By carefully structuring and patterning a material, it is possible to introduce emergent properties that would otherwise not exist. These metamaterials have allowed the development of a wide variety of new optical properties. Here, Matsubara et al present a magnetic metamaterial, where spin-currents can be directed by tuning the polarization of the incident light.

    • Masakazu Matsubara
    • , Takatsugu Kobayashi
    •  & Takeshi Kato
  • Article
    | Open Access

    Understanding water transport through nanochannels is central to biology, separations and clean water. Here, the authors show transport of water vapor through Angstrom-scale pores (~2.8–6.6 Å in diameter) in atomically thin graphene membranes is orders of magnitude faster than liquid water, due to permeation occurring in different flow regimes.

    • Peifu Cheng
    • , Francesco Fornasiero
    •  & Piran R. Kidambi
  • Article
    | Open Access

    Displaying the correct surface functionality at the right time is important for efficient drug delivery. Here, the authors report on the pH-responsive, sequential presentation of cell-penetrating peptide and liver-targeting moiety designed to improve intestinal absorption and liver targeting and demonstrate this with insulin delivery in vivo.

    • Tiantian Yang
    • , Aohua Wang
    •  & Yong Gan
  • Article
    | Open Access

    The authors demonstrate a label-free superresolution imaging method by using a hyperbolic material as a substrate for tailored light-matter interactions. The hyperbolic material enhanced scattering, combined with dark-field detection, result in 5.5-fold resolution improvement beyond the diffraction limit.

    • Yeon Ui Lee
    • , Shilong Li
    •  & Zhaowei Liu
  • Article
    | Open Access

    The authors report high-efficiency emission depletion through a surface migration emission depletion mechanism, which takes advantage of the effects of surface quenching and energy migration in nanocrystals. They demonstrate super-resolution microscopy with very low depletion saturation intensities.

    • Rui Pu
    • , Qiuqiang Zhan
    •  & Xiaogang Liu
  • Article
    | Open Access

    Many complex devices rely on epitaxial growth with high crystallinity and accurate composition. Here authors report epitaxial growth of Ge on deep etched porous Si pillars to provide a fully compliant substrate enabling elastic relaxation of defect free Ge microcrystals.

    • Alexandre Heintz
    • , Bouraoui Ilahi
    •  & Abderraouf Boucherif
  • Article
    | Open Access

    The application of electric fields >1 V/nm in solid state devices could provide access to unexplored phenomena, but it is currently difficult to implement. Here, the authors develop a double-sided ionic liquid gating technique to generate electric fields as large as 4 V/nm across few-layer WSe2, leading to field-induced semiconductor-to-metal transitions.

    • Benjamin I. Weintrub
    • , Yu-Ling Hsieh
    •  & Kirill I. Bolotin
  • Article
    | Open Access

    Coherently interfacing microwave and optical radiation at the single photon level is an outstanding challenge in quantum technologies. Here, the authors show bi-directional on-chip conversion between MW and optical frequencies exploiting piezoelectric actuation of a gallium phosphide optomechanical resonator.

    • Robert Stockill
    • , Moritz Forsch
    •  & Simon Gröblacher
  • Article
    | Open Access

    The optoelectronic performance of lead halide perovskite in highfluence applications are hindered by heterogeneous multi-polaron interactions in the nanoscale. Here, Nishda et al. spatially resolve sub-ns relaxation dynamics on the nanometer scale by ultrafast infrared pumpprobe nanoimaging.

    • Jun Nishida
    • , Peter T. S. Chang
    •  & Markus B. Raschke
  • Article
    | Open Access

    Analysis of the protein corona formed around nanoparticles is important for multiple applications in nanomedicine, the methods used at core facilities used for analysis can impact the results. Here, the authors report on a study into the variability of the results obtained from 17 different core facilities and the implications of this.

    • Ali Akbar Ashkarran
    • , Hassan Gharibi
    •  & Morteza Mahmoudi
  • Article
    | Open Access

    Natural buffer molecules ensure the controlled and precise delivery of specific molecules in biology. Here, the authors replicate the natural buffer systems using aptamers with controlled binding efficiency to control and maintain the levels of free drugs both in vitro and in vivo.

    • Arnaud Desrosiers
    • , Rabeb Mouna Derbali
    •  & Alexis Vallée-Bélisle
  • Article
    | Open Access

    Understanding the behaviors of droplets at nanoscales is crucial to many applications, yet it remains experimentally challenging to track them in real time. Here, Sbarra et al. use a miniature optomechanical resonator to probe the evaporation dynamics of attoliter droplets with millisecond resolution.

    • Samantha Sbarra
    • , Louis Waquier
    •  & Ivan Favero
  • Article
    | Open Access

    The authors developed a pristine hyperspectral SPR microscopy that enables monochromatic and polychromatic SPR imaging with flexible field-of-view option, single-pixel spectral SPR sensing and 2D quantification of thin films with resonant wavelength images.

    • Ziwei Liu
    • , Jingning Wu
    •  & Zhi-mei Qi
  • Article
    | Open Access

    THz imaging and spectroscopy always request even more efficient components. Here the authors, thanks to a modified photoconductive switch that includes a graphene layer, demonstrate a high-speed photoconductive switch without sacrificing the generated power.

    • Dehui Zhang
    • , Zhen Xu
    •  & Zhaohui Zhong
  • Article
    | Open Access

    Yu-Shiba-Rusinov (YSR) states result from the exchange coupling between a localized magnetic moment and a superconductor. Traditionally, the YSR states have been studied for magnetic atoms. For molecular magnets with extended ligand spin, the entanglement of spin and ligand orbital gives rise to new forms of YSR excitations. Here, Xia et al uncovered spin-orbital YSR states in an unpaired ligand spin in the molecular magnet Tb2Pc3 on Pb.

    • Hui-Nan Xia
    • , Emi Minamitani
    •  & Ying-Shuang Fu
  • Article
    | Open Access

    The motion of a vibrating object is set by the way it is held. Here, the authors show a nanomechanical resonator reversibly slides on its supporting substrate as it vibrates and exploit this unconventional dynamics to quantify friction at the nanoscale.

    • Yue Ying
    • , Zhuo-Zhi Zhang
    •  & Guo-Ping Guo
  • Article
    | Open Access

    We show frequency domain mirrors that provide reflections of optical mode propagation in the frequency domain. We theoretically investigated the mirror properties and experimentally demonstrate it using polarization and coupled-resonator-based coupling on thin film Lithium Niobate.

    • Yaowen Hu
    • , Mengjie Yu
    •  & Marko Lončar
  • Article
    | Open Access

    Interfacial ferroelectricity may emerge in moiré superlattices. Here, the authors find that the polarized charge is much larger than the capacity of the moiré miniband and the associated anomalous screening exists outside the band.

    • Ruirui Niu
    • , Zhuoxian Li
    •  & Jianming Lu
  • Article
    | Open Access

    Cost-effective methods for long-term storage of DNA are desired. Here the authors present a method for in situ cryosilicification of whole blood cells, allowing long-term and room temperature preservation of genomic information for only approximately $0.5 per sample.

    • Liang Zhou
    • , Qi Lei
    •  & Wei Zhu
  • Article
    | Open Access

    Slow light effects are interesting for telecommunications and quantum photonics applications. Here, the authors use coupled exciton-surface plasmon polaritons (SPPs) in a hybrid monolayer WSe2-metallic waveguide structure to demonstrate a 1300-fold reduction of the SPP group velocity.

    • Matthew Klein
    • , Rolf Binder
    •  & John R. Schaibley
  • Article
    | Open Access

    Here, the authors fabricate large area and highly aligned polymer semiconductor sub-microwires arrays via coaxial focused electrohydrodynamic jet printing technology, achieving high on/off ratio and average mobility that is 5x higher than that of thin film based organic field effect transistors.

    • Dazhi Wang
    • , Liangkun Lu
    •  & Yunqi Liu
  • Article
    | Open Access

    Topological superconductivity (TSC) is predicted to exist in nanowires with strong spin-orbit coupling (SOC) when they are in proximity to superconductors, with a key signature being zero-energy states in conductance measurements. Here, using weak-SOC carbon nanotubes as the nanowires, the authors show that similar looking zero-energy states can appear even in nanowires which cannot, in principle, host TSC.

    • Lauriane C. Contamin
    • , Lucas Jarjat
    •  & Matthieu R. Delbecq
  • Article
    | Open Access

    Atomic-scale insights into how a nanoparticle surface reconstructs under reaction conditions and the impact of the reconstruction on catalytic activity are still lacking. Here the authors reveal that Pd nanocatalysts display oscillatory changes in both their structure and activity during CO oxidation using operando TEM.

    • Tanmay Ghosh
    • , Juan Manuel Arce-Ramos
    •  & Utkur Mirsaidov
  • Article
    | Open Access

    Surface modification of nanoparticles by cell membrane (CM) coating to improve their bio-interface properties often results in partial coating. Here the authors show that partial coating is an intermediate state due to the absorption of CM fragments or vesicles and can be resolved by increasing CM fluidity with external phospholipids.

    • Lizhi Liu
    • , Dingyi Pan
    •  & Vesa-Pekka Lehto
  • Article
    | Open Access

    Experimental studies of the Casimir effect have involved only interactions between two bodies so far. Here, the authors observe a micrometer-thick cantilever under the Casimir force exerted by microspheres from two sides simultaneously.

    • Zhujing Xu
    • , Peng Ju
    •  & Tongcang Li
  • Article
    | Open Access

    2D multiferroic materials have garnered broad interests due to their magnetoelectric properties and multifunctional applications. Here, the authors discover a multiferroic feature in physical vapor deposition synthesized 2D metallic p-doped SnSe.

    • Ruofan Du
    • , Yuzhu Wang
    •  & Jun He
  • Article
    | Open Access

    The potential energy efficiency of impact ionization field-effect transistors (I2FETs) is usually limited by stringent operational conditions. Here, the authors report I2FETs based on 2D WSe2, showing average subthreshold slopes down to 2.3 mV/dec and on/off ratios of ~106 at room temperature and bias voltages <1 V.

    • Haeju Choi
    • , Jinshu Li
    •  & Sungjoo Lee
  • Article
    | Open Access

    Skyrmion bubbles consist of a centre magnetization pointing up or down, and a swirling vortex magnetic texture, either clockwise or anticlockwise around this. Here, Yao et al use a three-dimensional imaging approach to study this magnetic texture, and show that while the in-plane vortex-like texture changes easily, the centre magnetic direction, the polarity, is retained, leading to a reversed chirality.

    • Yuan Yao
    • , Bei Ding
    •  & Wenhong Wang
  • Article
    | Open Access

    Topological materials hold great promise for dissipationless information transmission. Here, the authors create Chern insulator junctions between domains with different Chern numbers in MnBi2Te4 to realize the basic operation of a topological circuit.

    • Dmitry Ovchinnikov
    • , Jiaqi Cai
    •  & Xiaodong Xu