Nanoparticles articles within Nature

Featured

  • Letter |

    On rough metallic surfaces hotspots appear under optical illumination that concentrate light to tens of nanometres. This effect can be used to detect molecules, as weak fluorescence signals are strongly enhanced by the hotspots. Such hotspots are associated with localized electromagnetic modes, caused by the randomness of the surface texture, but the detailed profile of the local electromagnetic field is unknown. Here, an ingenious approach is described, making use of the Brownian motion of single molecules to probe the local field. The study succeeds in imaging the fluorescence enhancement profile of single hotspots on the surface of aluminium thin-film and silver nanoparticle clusters with accuracy down to one nanometre, and finds that the field distribution in a hotspot follows an exponential decay.

    • Hu Cang
    • , Anna Labno
    •  & Xiang Zhang
  • News & Views |

    The resonant behaviour of clusters of gold nanoparticles has been tuned by gradually bringing the particles together. The approach could have many applications, including chemical and biological sensing.

    • Mark I. Stockman
  • News & Views |

    Nanoparticles that generate light through a mechanism known as second harmonic generation have been used to image live tissue. The particles overcome many problems associated with fluorescent probes for bioimaging.

    • Bruce E. Cohen
  • Letter |

    The spontaneous assembly of two different types of nanoparticle into ordered superlattices offers a route to designing materials with precisely controlled properties, but available synthesis strategies have many practical limitations. These authors report a fabrication process which overcomes these limitations. They generate large-scale (square-millimetre) binary superlattice structures at a liquid–air interface, allowing the material to be free standing or transferred to any substrate ready for fabrication into useful devices.

    • Angang Dong
    • , Jun Chen
    •  & Christopher B. Murray
  • Letter |

    Many new functional materials and devices could be made if it were possible to rationally combine nanometre-scale particles into larger structures. An assembly line operating on the nanometre scale has now been demonstrated. It uses a DNA origami tile as a framework and track for the assembly process, three distinct DNA machines attached to the tile as programmable cargo-donating devices, and a DNA walker to generate the target product by moving along the track and collecting cargo from those devices that are switched on.

    • Hongzhou Gu
    • , Jie Chao
    •  & Nadrian C. Seeman
  • News |

    Tiny particles carrying short strands of RNA can interfere with protein production in tumours.

    • Janet Fang
  • Letter |

    It has previously been shown in mice and non-human primates that systemically delivered short RNA molecules can inhibit gene expression. Here it is shown that a short interfering RNA (siRNA) can be systemically delivered, using nanoparticles, to a solid tumour in humans. The siRNA mediates cleavage of its target mRNA, thereby also reducing levels of the encoded protein. This proof-of-principle study confirms the potential of this technology for treating human disease.

    • Mark E. Davis
    • , Jonathan E. Zuckerman
    •  & Antoni Ribas
  • Letter |

    Surface-enhanced Raman scattering is a powerful spectroscopy technique that can be used to study substances down to the level of single molecules. But the practical applications have been limited by the need for metal substrates with roughened surfaces or in the form of nanoparticles. Here a new approach — shell-insulated nanoparticle-enhanced Raman spectroscopy — is described, and its versatility demonstrated with numerous test substances.

    • Jian Feng Li
    • , Yi Fan Huang
    •  & Zhong Qun Tian
  • News & Views |

    Gold nanoparticles coated with a thin layer of an oxide allow molecules adsorbed on surfaces as diverse as those of platinum, yeast cells or citrus fruits to be characterized routinely in the laboratory.

    • Martin Moskovits
  • Letter |

    Many technological materials are intentionally 'doped' with foreign elements to impart new and desirable properties, a classic example being the doping of semiconductors to tune their electronic behaviour. Here lanthanide doping is used to control the growth of nanocrystals, allowing for simultaneous tuning of the size, crystallographic phase and optical properties of the hybrid material.

    • Feng Wang
    • , Yu Han
    •  & Xiaogang Liu